References
- Alexe, G., Alexe, S., Liotta, L. A., Emanuel, P., Reiss, M., and Hammer, P. L. (2004), Ovarian cancer detection by logical analysis of proteomic data, Proteomis, 4, 766-783 https://doi.org/10.1002/pmic.200300574
- Amato, U. and Sapatinas, T. (2005), Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements, Advances and Applications in Statistics, 5, 21-50
- Hastie, T., Tibshirani, R., and Friedman, J. (2001), The elements of statistical learning, Springer, USA
- Jeong, M. K., Chen, D., Lu, J. C. (2003), Thresholded scalogram and its applications in process fault detection, Applied stochastic models in business and industry, 19(3), 231-244 https://doi.org/10.1002/asmb.495
- Jung, U. (2004), Wavelet-based data reduction and mining for multiple functional data, Ph.D. dissertation, Georgia Institute of Technology, USA
- Lada, E. K., Lu, J. C., and Willson, J. R. (2002), A wavelet- based procedure for process fault detection, IEEE Transactions on Semiconductor Manufacturing, 15(1), 79-90 https://doi.org/10.1109/66.983447
- Raimondo, M. (2002), Wavelet shrinkage via peaks over threshold, Intersat, May, 1-19
- Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q. (2004), Sample classification from protein mass spectrometry by peak probability contrasts, Bioinformatics, 20(17), 3034-3044 https://doi.org/10.1093/bioinformatics/bth357
- Vannucci, M., Sha, N., Brown, J. P. (2005), NIR and mass spectra classification: Bayesian methods for wavelet-based feature selection, Chemometrics and intelligent laboratory systems, 77(1/2), 139-148 https://doi.org/10.1016/j.chemolab.2004.10.009
- Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., and Zhao, H. (2003), Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data, Bioinformatics, 19(13), 1636-1643 https://doi.org/10.1093/bioinformatics/btg210