Chemically Amplified Resist for Extreme UV Lithography

극자외선 리소그래피용 화학증폭형 레지스트

  • Choi, Jaehak (Radiation Application Division, Korea Atomic Energy Research Institute) ;
  • Nho, Young Chang (Radiation Application Division, Korea Atomic Energy Research Institute) ;
  • Hong, Seong Kwon (Department of Polymer Science and Engineering, Chungnam National University)
  • 최재학 (한국원자력연구소 방사선이용연구부) ;
  • 노영창 (한국원자력연구소 방사선이용연구부) ;
  • 홍성권 (충남대학교 공과대학 고분자공학과)
  • Received : 2005.11.01
  • Accepted : 2006.03.17
  • Published : 2006.04.10

Abstract

Poly[4-hydroxystyrene-co-2-(4-methoxybutyl)-2-adamantyl methacrylate] was synthesized and evaluated as a matrix resin for extreme UV (EUV) chemically amplified resist. The resist system formulated with this polymer resolved 120 nm line and space (pitch 240 nm) positive patterns using a KrF excimer laser scanner (0.60 NA). The well defined 50 nm line positive patterns (pitch 180 nm) were obtained using an EUV lithography tool. The dry etching resistance of this resist for a $CF_{4}$-based plasma was 1.1 times better than that of poly(4-hydroxystyrene).

새로운 극자외선 리소그래피용 화학증폭형 레지스트의 매트릭스 수지로 poly[4-hydroxystyrene-co-2-(4-methoxybutyl)-2-adamantyl methacrylate]를 합성하고 평가하였다. 이 중합체로 제조된 레지스트로 KrF 엑시머 레이저 노광장비를 사용하여 선폭 120 nm (피치 240 nm)를 구현할 수 있었다. 극자외선 리소그래피 장비를 이용하여 평가한 결과 선폭 50 nm (피치 180 nm)의 포지형 패턴을 얻었다. $CF_{4}$ 플라즈마를 이용한 건식에칭내성 평가 결과 기존 원자외선 레지스트용 매트릭스 수지인 poly(4-hydroxystyrene)보다 약 10% 향상되었다.

Keywords

Acknowledgement

Supported by : 충남대학교

References

  1. V. N. Golovkina, P. F. Nealey, F. Cerrina, J. W. Taylor, H. H. Solak, C. David, and J. Gobrecht, J. Vac. Sci. Technol. B, 22, 9 (2004)
  2. R. L. Brainard, J. Cobb, C., and A. Cutler, J. Photopolym. Sci. Technol., 16, 401 (2003) https://doi.org/10.2494/photopolymer.16.401
  3. J. L. Cobb, R. L. Brainard, D. J. O'Connell, and P. M. Dentinger, Mat. Res.Soc. Symp. Proc., 705, 91 (2002)
  4. The 2003 Edition of the ITRS: Lithography, 2003 International Technology Roadmap for Semiconductors
  5. N. N. Matsuzawa, S. Okazaki, and A. Ishitani, Microlithography World, Autumn, 20 (2000)
  6. N. N. Matsuzawa, H. Oizumi, S. Mori, S. Irie, E. Yano, S. Okazaki, and A. Ishitani, Microelectron. Eng., 53, 671 (2000) https://doi.org/10.1016/S0167-9317(00)00402-0
  7. N. N. Matsuzawa, H. Oizumi, S. Mori, S. Irie, S. Shirayone, E. Yano, S. Okazaki, A. Ishitani, and D. A. Dixon, Jpn. J. Appl. Phys., 38, 7109 (1999) https://doi.org/10.1143/JJAP.38.7109
  8. K. Nojaki and E. Yano, Fujitsu Sci. Tech. J., 38, 3 (2002)
  9. S. Hein, S. Angood, D. Ashworth, S. Basset, T. Bloomstein, K. Dean, R. R. Kunz, D. Miller, S. Patel, and G. Rich, Proc. SPIE., 4345, 439 (2001)
  10. J. Kim, T. Oh, J. Choi, and J. Lee, Proc. SPIE., 5039, 689 (2003)
  11. G. G. Barclay, Z. Mao, K. Xiong, and P. Trefonas, Proceedings of the 12th International Conference on Photopolymers, edited by H. Ito, M. M. Khojasteh, and W. Li, Society of Plastics Engineers Mid Husdon Section, 153 (2000)
  12. H. Kim, D. Jung, S. Lee, S. Choi, S. Woo, R. J. Kavanagh, G. Barclay, B. Blacksmith, D. Kang, G. Pohlers, J. Cameron, J. Mattia, S. Caporale, T. Penniman, L. Joesten, and J. W. Thackeray, Proc. SPIE., 4345, 776 (2001)
  13. H. Ito, G. Breyta, D. Hofer, and R. Sooriyakumaran, J. Photopolym. Sci. Technol., 7, 433 (1994) https://doi.org/10.2494/photopolymer.7.433
  14. R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, and S. Connolly, J. Vac. Sci. Technol. B., 17, 3384 (1999) https://doi.org/10.1116/1.591015
  15. W. Domke, S. Hirscher, O. Kirch, K. Kragler, and K. Lowack, 2nd Int. EUVL Symposium, Antwerp, Belgium (2003)
  16. AIXUV web site. http://www.aixuv.de/