Supercritical water oxidation of Dimethyl methylphosphonate(DMMP)

Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응

  • Lee, Hae-Wan (Department of Chemical and Biological Defense, Agency for Defense Development) ;
  • Ryu, Sam-Gon (Department of Chemical and Biological Defense, Agency for Defense Development) ;
  • Lee, Jong-Chol (Department of Chemical and Biological Defense, Agency for Defense Development) ;
  • Hong, Deasik (Department of Chemical and Biological Defense, Agency for Defense Development)
  • 이해완 (국방과학연구소 화생부) ;
  • 류삼곤 (국방과학연구소 화생부) ;
  • 이종철 (국방과학연구소 화생부) ;
  • 홍대식 (국방과학연구소 화생부)
  • Received : 2006.02.17
  • Accepted : 2006.07.24
  • Published : 2006.12.31

Abstract

Supercritical water oxidation of DMMP using continuous flow reactor was studied at temperature ranging from 440 to $540^{\circ}C$ and a fixed pressure of 242 bar. The range of residence times in the reactor was from 10 to 26 s, and oxygen excess value varied from -40 to 200%. Destruction efficiencies (DE) of DMMP were greater than 99.7% at $540^{\circ}C$, and increased as the DMMP concentrations were increased. DE of DMMP were significantly affected by oxygen concentration under stoichiometric amount, but showed little difference over stoichiometric amount. On the basis of 30 data with conversions greater than 85%, kinetic correlations for the DE of DMMP were developed. The pre-exponential factor was $(1.10{\pm}0.76){\times}10^6$, and the activation energy was $90.66{\pm}3.87kJ/mol$, and the reaction orders for DMMP and oxygen were $1.02{\pm}0.03$, $0.32{\pm}0.03$, respectively. The model predictions agreed well with the experimental data.

연속식 SCWO 반응기를 이용하여 DMMP의 초임계수 산화반응을 반응온도 $440{\sim}540^{\circ}C$, 반응압력 242 bar, 체류시간 10~26 초, 과잉산소량 -40~200%의 조건 하에서 수행하였다. 반응온도 $540^{\circ}C$에서 DMMP 분해율은 99.7% 이상으로 높았으며, DMMP의 농도가 증가함에 따라 DMMP 분해율은 증가하였다. 산화제 농도 변화에 따른 분해율은 양론비 이하에서는 현저하게 영향을 받았으나, 양론비 이상에서는 큰 차이가 없었다. DMMP 분해율이 85% 이상인 30개의 실험결과로부터 DMMP의 초임계수 산화반응 속도식을 도출하였다. Pre-exponential factor는 $(1.10{\pm}0.76){\times}10^6$, 반응 활성화에너지는 $90.66{\pm}3.87kJ/mol$, DMMP와 산소에 대한 반응차수는 각각 $1.02{\pm}0.03$, $0.32{\pm}0.03$로 모델에 의한 예측값과 실험값은 잘 일치하였다.

Keywords

References

  1. Watanabe, M., Sato, T., Inomata, H., Smith, R. L., Kruse, A. and Dinjus, E., 'Chemical Reactions of C1 Compounds in Near-critical and Supercritical Water,' Chem. Rev., 104(12), 5803-5821(2004) https://doi.org/10.1021/cr020415y
  2. Kritzer, P. and Dinjus, E., 'An Assessment of Supercritical Water Oxidation(SCWO) Existing Problem, Possible Solutions and New Reactor Concepts,' Chem. Eng. Journal, 83(2), 207-214(2001) https://doi.org/10.1016/S1385-8947(00)00255-2
  3. Hodes, M., Marrone, P. A., Hong, G. T., Smith, K. A. and Tester, J. W., 'Salt Precipitation and Scale Control in Supercritical Water Oxidation-part B : Commercial/full-scale Applications,' J. Supercritical Fluids, 29(3), 289-312(2004) https://doi.org/10.1016/S0896-8446(03)00092-5
  4. McBrayer, R. N., Deaton, J. E. and Eller, J. M., 'Turbulent Flow Cold-wall Reactor,' US Patent 5,552,039(1996)
  5. Calzavara, Y., Joussot-Dubien, C., Turc, H., A., Fauvel, E. and Sarrade, S., 'A New Reactor Concept for Hydrothermal Oxidation,' J. Supercritical Fluids, 31(2), 195-206 (2004) https://doi.org/10.1016/j.supflu.2003.11.001
  6. Fauvel, E., Joussot-Dubien, C., Guichardon, P., Charbit, G. and Sarrade, S., 'A Double-wall Reactor for Hydrothermal Oxidation with Supercritical water flow Across the Inner Porous Tube,' J. Supercritical Fluids, 28(1), 47-56(2004) https://doi.org/10.1016/S0896-8446(03)00002-0
  7. Casal, V. and Schmidt, H., 'SUWOX-a Facility for the Destruction of Chlorinated Hydrocarbons,' J. Supercritical Fluids, 13(1-3), 269-276(1998) https://doi.org/10.1016/S0896-8446(98)00089-8
  8. Cocero, M. J. and Martinez, J. L., 'Cool Wall Reactor for Supercritical Water Oxidation - Modeling and Operation Results,' J. Supercritical Fluids, 31(1), 41-55(2004) https://doi.org/10.1016/j.supflu.2003.09.023
  9. Cohen, L. S., Jensen, D., Lee, G. and Ordway, D. W., 'Hydro-Thermal Oxidation of Navy Excess Hazardous Materials,' Waste Management, 18(6-8), 539-546(1998) https://doi.org/10.1016/S0956-053X(98)00137-8
  10. Haroldsen, B. L., Ariizumi, D. Y., Mills, B. E., Brown, B. G. and Rousar, D. C., 'Transpiring wall Supercritical Oxidation Test Reactor Design Report,' Sandia report SAND 96-8213 UC-402(1996)
  11. McGuinness, T. G., 'Supercritical Oxidation Reactor,' US Patent 5,558,783(1996)
  12. National Research Council, Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons, National Academy Press. Washington, D.C.(1999).
  13. National Research Council, Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Blue Grass Army Depot, National Academy Press. Washinton, D.C.(2002)
  14. Marrone, P. A., Cantwell, S. D. and Dalton, D. W., 'SCWO System Designs for Waste Treatment : Application to Chemical Weapon Destruction,' Ind. Eng. Chem. Res., 44(24), 9030-9039(2005) https://doi.org/10.1021/ie0506670
  15. Bianchetta, S., Li, L. and Gloyna, A. F., 'Supercritical Water Oxidation of Methyl Phosphonic Acid,' Ind. Eng. Chem. Res., 38(8), 2902-2910(1999) https://doi.org/10.1021/ie990094p
  16. Lachance, R., Paschkewitz, J., DiNaro, J. and Tester, J. W., 'Thiodiglycol Hydrolysis and Oxidation in sub and Supercritical Water,' J. Supercritical fluids, 16(2), 133-147(1999). https://doi.org/10.1016/S0896-8446(99)00025-X
  17. Cocero, M. J. and Martinez, J. L., 'Supercritical Water Oxidation Process Under Energetically Self-sufficient Operation,' J. Supercritcal Fluids, 24(1), 37-46(2002) https://doi.org/10.1016/S0896-8446(02)00011-6