Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells

헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조

  • Kim, Donghyun (School of Chemical and Biological Engineering, & Institute of Chemical Process, Seoul National Universty) ;
  • Sauk, Junho (School of Chemical and Biological Engineering, & Institute of Chemical Process, Seoul National Universty) ;
  • Kim, Hwayong (School of Chemical and Biological Engineering, & Institute of Chemical Process, Seoul National Universty) ;
  • Lee, Kab Soo (Environmental System Engineering, Kimpo College) ;
  • Sung, Joon Yong (Center for Clean Technology, Yonsei University)
  • 김동현 (서울대학교 화학생물공학부) ;
  • 석준호 (서울대학교 화학생물공학부) ;
  • 김화용 (서울대학교 화학생물공학부) ;
  • 이갑수 (김포대학 환경시스템과) ;
  • 성준용 (연세대학교 CT 연구단)
  • Received : 2005.07.19
  • Accepted : 2006.03.10
  • Published : 2006.04.30

Abstract

The preparation and characterization of new polymer composite membranes containing polyphenylene oxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) or phosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blended using the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was used as a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast onto a glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porous PPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuring their ion conductivity and methanol permeability. The performance was evaluated with composite membranes as electrolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films in the DMFC reduced by 66%.

폴리페닐렌 옥사이드(PPO)를 이용하여 헤테로폴리산(HPA)을 고정시킨 박막 제조를 통해 새로운 고분자 복합막을 제조하고 특성을 분석하였다. 헤테로폴리산인 텅스토인산(PWA)이나 몰리브도인산(PMA)을 혼합한 PPO 박막은 서로 같은 용매에 녹지 않으므로 혼합용매를 사용하여 제조하였다. 본 연구에서는 PWA를 녹이기 위한 용매로 메탄올을 PPO를 녹이기 위한 용매로 클로로포름을 사용하였으며, 혼합된 PPO-PWA 용액을 유리판 위에서 제막하였다. 다공성의 PPO-PWA 박막에 나피온 혼합물을 사용하여 복합막을 제조하였고, 제조된 복합막은 이온 전도도와 메탄올 투과도를 측정하여 특성화하였다. PPO-PWA 복합막의 형태와 구조는 SEM(scanning electron microscopy)과 EDS(energy dispersive spectrometer)로 관찰하였고, 복합막은 직접 메탄올 연료전지(DMFC)용 전해질로서의 성능을 시험하였다. PPO-PWA 구조를 가지고 있는 복합막을 이용함으로써 DMFC 내에서의 메탄올 투과 현상을 66% 줄일 수 있었다.

Keywords

References

  1. Smitha, B., Sridhar, S. and Khan, A. A., 'Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells,' Journal of Membrane Science, 225(1), 63-76(2003) https://doi.org/10.1016/S0376-7388(03)00343-0
  2. Appleby, A. J. and Foulkes, F. R., 'Fuel Cell Handbook,' Van Nostrand Reinhold, N.Y., 3-7(1989)
  3. Yu, J., Yi, B., Xing, D., Liu, F., Shao, Z. and Fu, Y., 'Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of its Composite Membranes in Fuel Cells,' Journal of Power Sources, 4937, 1-6(2002)
  4. Jorissen, L., Gogel, V., Kerres, J. and Garche, J., 'New Membranes for Direct Methanol Fuel Cells,' Journal of Power Sources, 105(2), 267-273(2002) https://doi.org/10.1016/S0378-7753(01)00952-1
  5. Kordesh, K. V., '25 Years of Fuel Cell Development,' J. Electrochem. Soc., 125(1), 77-91(1978) https://doi.org/10.1149/1.2131782
  6. Vielstich, W., Lamm, A., Gasteiger, H. A., 'Handbook of Fuel Cells,' John Wiley & Sons Ltd., England(2003)
  7. Scott, K. and Taama, W., 'Performance of a Direct Methanol Fuel Cell,' J. Appl. Electrochem., 28(3), 289-297(1998) https://doi.org/10.1023/A:1003263632683
  8. Shao, Z. G., Wang, X. and Hsing, I. M., 'Composite Nafion/ Polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell,' Journal of Membrane Science, 210(1), 147-153(2002) https://doi.org/10.1016/S0376-7388(02)00386-1
  9. Cruickshank, J. and Scott K., 'The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell,' Journal of Power Sources, 70(1), 40-47(1998) https://doi.org/10.1016/S0378-7753(97)02626-8
  10. Dimitrova, P., Friedrich, K. A., Stimming, U. and Vogt, B., 'Modified Nafion${\circledR}$-Based Membranes for Use in Direct Methanol Fuel Cells,' Solid State Ionics, 150(1), 115-1221(2002) https://doi.org/10.1016/S0167-2738(02)00267-9
  11. Dimitrova, P., Friedrich, K. A., Vogt, B. and Stimming, U., 'Transport Properties of Ionomer Composite Membranes for Direct Methanol Fuel Cells,' Journal of Electroanalytical Chemistry, 532(1), 75-83(2002) https://doi.org/10.1016/S0022-0728(02)01006-9
  12. Kim, Y. S. and Yamazaki, Y., 'Low Methanol Permeable and High Proton-Conducting Nafion/Calcium Phosphate Composite Membrane for DMFC,' Solid Stete Ionics, 176(11), 1079-1089(2005) https://doi.org/10.1016/j.ssi.2004.12.012
  13. Sauk, J., Byun, J., Kang, Y. and Kim, H., 'Preparation of Nafion/ Polystyrene Composite Membranes Using Supercritical $CO_2$ Impregnation for DMFCs,' Korean Chem. Eng. Res., 42(5), 619-623(2004)
  14. Hatanaka, T., Hasegawa, N., Kamiya, A., Kawasumi, M., Morimoto, Y. and Kawahara, K., 'Cell Performances of Direct Methanol Fuel Cells with Grafted Membranes,' Fuel, 81(17), 2173-2176 (2002) https://doi.org/10.1016/S0016-2361(02)00164-3
  15. Li, L., Xu, L. and Wang, Y., 'Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell,' Materials Letters, 57(8), 1406-1410(2003) https://doi.org/10.1016/S0167-577X(02)00998-9
  16. Lee, J. K., Song, I. K. and Lee, W. Y., 'Design of Novel Catal Yst Imbedding Heteropoly Acids in Polymer Films: Catalytic Activity for Ethanol Conversion,' Fuel Journal of Molecular Catalysis A: Chemical, 120(1), 207-216(1997) https://doi.org/10.1016/S1381-1169(96)00429-3
  17. Kozhenvnikov, I. V. and Matveev, K. III., 'Homogeneous Catalysts Based on Heteropoly Acid,' Applied Catalysis, 5(2), 135-150 (1983) https://doi.org/10.1016/0166-9834(83)80128-6
  18. Song, I. K., Lee, J. K. and Lee, W. Y., 'Preparation and Catalytic Activity of $H_3PMo_{12}O_{40}$-Blended Polymer Film for Ethanol Conversion Reaction,' Applied Catalysis A, 119(1), 107-119(1994) https://doi.org/10.1016/0926-860X(94)85028-3
  19. Okuhara, T., Mizuno, N. and Misono, M., 'Catalytic Chemistry of Heteropoly Compounds,' Adv Catal, 41, 113-252(1996) https://doi.org/10.1016/S0360-0564(08)60041-3
  20. Sauk, J., Byun, J. and Kim, H., 'Grafting of Styrene on to Nafion Membranes Using Supercritical $CO_2$ Impregnation for Direct Methanol Fuel Cells,' Journal of Power Sources, 132(1), 59-63 (2004) https://doi.org/10.1016/j.jpowsour.2004.01.041
  21. Lee, H. Y. and Song, I. K., 'Design of Heteropolyacid-imbedded Polymer Films and Catalytic Membranes,'HWAHAK KONGHAK, 38(3), 317-329(2000)