Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell

메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성

  • Nam, Ki-Don (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Kim, Tae-Jin (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Kim, Sang-Kyung (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Lee, Byoung-Rok (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Ryu, Seung-Kon (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Doo-Hwan (Advanced Energy Research Department, Korea Institute of Energy Research)
  • 남기돈 (한국에너지기술연구원 신에너지연구부) ;
  • 김태진 (한국에너지기술연구원 신에너지연구부) ;
  • 김상경 (한국에너지기술연구원 신에너지연구부) ;
  • 이병록 (한국에너지기술연구원 신에너지연구부) ;
  • 백동현 (한국에너지기술연구원 신에너지연구부) ;
  • 유승곤 (충남대학교 화학공학과) ;
  • 정두환 (한국에너지기술연구원 신에너지연구부)
  • Received : 2006.02.14
  • Accepted : 2006.03.15
  • Published : 2006.04.10

Abstract

Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.

직접 메탄올 연료전지에서 촉매 담지체로서 세공 크기별 균질한 다공성 탄소는 메조페이스 핏치와 졸-겔법으로 직접 합성한 구형 실리카를 이용하여 제조하였다. Tetrahydrofuran (THF)에 용해된 핏치와 메탄올에 분산된 구상의 실리카를 혼합하고 탄화한 후에 5 M NaOH로 실리카를 식각하여 다공성 탄소를 만들었다. 이 다공성탄소의 비표 면적은 사용된 구형 실리카의 입자 크기가 작을수록 증가하였으며, $14.7{\sim}87.7m^2/g$ 범위를 나타내었다. 평균 기공 직경 또한 사용된 실리카 입자크기에 따라 50~550 nm로 다양하게 나타났다. 다공성 탄소 담지체에 백금과 루테늄을 담지시키기 위해 액상환원법을 사용하였고, 60 wt% 백금-루테늄이 담지된 촉매의 전기 산화 활성 및 전극 성능 특성은 순환 전압 전류법과 단위전지 시험으로 평가하였다. 본 실험 범위 중 50 nm 실리카를 이용하여 제조한 백금-루테늄/다공성탄소의 경우(60 wt% Pt-Ru/porous carbon), 순환 전압 전류법 시험에서 0.4 V에서의 전류 밀도 값이 $123mA/cm^2$가 측정되었고, 단위전지 성능 시험에서는 최대 전력 밀도 값이 $60^{\circ}C$$80^{\circ}C$, 산소분위기에서 각각 105, $162mW/cm^2$를 나타내었다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. G. Cacciola, V. Antonucci, and S. Freni, J. Power Sources, 100, 67 (2001) https://doi.org/10.1016/S0378-7753(01)00884-9
  2. K. Scott, W. M. Taama, and P. Argyropoulos, J. Power Sources, 79, 43 (1999) https://doi.org/10.1016/S0378-7753(98)00198-0
  3. A. Heinzel and V. M. Barragan, J. Power Sources, 84, 70 (1999) https://doi.org/10.1016/S0378-7753(99)00302-X
  4. M. Watanabe and S. Motoo, J. Electroanal. Chem., 60, 259 (1975) https://doi.org/10.1016/S0022-0728(75)80260-9
  5. B. Rajesh, V. Karthik, S. Karthikeyan, K. R. Thampi, J. M. Bonard, and B. Viswanathan, Fuel, 81, 2177 (2002) https://doi.org/10.1016/S0016-2361(02)00162-X
  6. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 13, 677 (2001) https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  7. G. S. Chai, S. B. Yoon, S. Kang, J. H. Choi, Y. E. Sung, Y. S. Ahn, H. S. Kim, and J. S. Yu, Electrochim. Acta, 50, 823 (1992) https://doi.org/10.1016/j.electacta.2003.11.041
  8. M. E. Beauharnois, D. D. Edie, and M. C. Thies, Carbon, 39, 2101 (2001) https://doi.org/10.1016/S0008-6223(01)00045-8
  9. S. P. Jones, C. C. Fain, and D. D. Edie, Carbon, 35, 1533 (1997) https://doi.org/10.1016/S0008-6223(97)00106-1
  10. K. Osseo-Asare and F. J. Arriagada, Colloids and Surfaces, 50, 321 (1990) https://doi.org/10.1016/0166-6622(90)80273-7
  11. T. Kawaguchi, W. Sugimoto, Y. Murakami, and Y. Takasu, J. Catalysis, 229, 176 (2005) https://doi.org/10.1016/j.jcat.2004.10.020
  12. L. D. Burke and J. K. Casey, Electrochim. Acta, 37, 1817 (1992) https://doi.org/10.1016/0013-4686(92)85086-Z
  13. D. A. J. Rand and R. Woods, J. Electroanal. Chem., 36, 57 (1972) https://doi.org/10.1016/S0022-0728(72)80445-5
  14. A. G. Okunev, S. A. Shaurman, A. F. Danilyuk, Yu. I. Aristov, G. Bergeret, and A. Renuprez, J. Non-Crystalline Solids, 260, 21 (1999) https://doi.org/10.1016/S0022-3093(99)00568-2
  15. P. Allongue, H. Brune, and H. Gerischer, Surf. Sci., 275, 414 (1992) https://doi.org/10.1016/0039-6028(92)90814-M
  16. G. L. Messing, K. S. Mazdiyasni, J. W. McCauley, and R. A. Haber, Ceramic Powder Sci., 21, 121 (1987)
  17. Y. Lee, C. W. Lee, H. S. Kang, Y. H. Jang, and Y. M. Hahm, Appl. Chem., 1, 398 (1997)
  18. T. Poppe, Icarus, 164, 139 (2003) https://doi.org/10.1016/S0019-1035(03)00137-4
  19. D. Dutta, S. Chatterjee, K. T. Pillai, P. K. Pujari, and B. N. Ganguly, Phys. Chem., 312, 319 (2005) https://doi.org/10.1016/j.chemphys.2004.12.008
  20. E. Antolini and F. Cardellini, J. Alloys and Compounds, 315, 118 (2001) https://doi.org/10.1016/S0925-8388(00)01260-3
  21. H. Daimon and Y. Kurobe, Catalysis Today, 111, 182 (2006) https://doi.org/10.1016/j.cattod.2005.10.023
  22. M. Watanabe, S. Saegusa, and P. Stonehart, J. Electroanal. Chem., 271, 213 (1989) https://doi.org/10.1016/0022-0728(89)80076-2
  23. T. J. Kim and C. K. Park, J. Korean Ind. Eng. Chem., 11, 40 (2000)