Molecular Cloning of Glycoside Hydrolase Family 74 Genes and Analysis of Transcript Products from the Basidiomycete Phanerochaete chrysosporium

담자균 Phanerochaete chrysosporium으로부터 유래한 Glycoside Hydrolase Family 74 유전자 클로닝과 전사산물 분석

  • Lee, Jae-Won (Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Samejima, Masahiro (Graduate School of Agriculture and Life Sciences, The University of Tokyo) ;
  • Choi, In-Gyu (Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University)
  • 이재원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 鮫島正浩 (동경대학교 농업생명과학대학원) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2006.02.24
  • Accepted : 2006.03.27
  • Published : 2006.05.25

Abstract

In order to evaluate the mechanism of cellulose hydrolysis, the complementary DNA encoding Glycoside Hydrolase Family (GHF)74 was cloned from Phanerochaete chrysosporium. Depending on the presence of Cellulose Binding Module (CBM), it can be classified as GHF74A or GHF74B. The GHF74A gene from P. chrysosporium (PcGHF74A) consists of 2163 bp encoding a protein of 721 amino acid residues. The PcGHF74A showed homology of 70~77% compared with the GHF74 from other filamentous fungi. The PcGHF74B, which contains CBM and is a member of family 1, was transcribed to various transcripts depending on the nature of carbon sources and their concentration. To study the possible presence of splice variants in GHF74B transcripts in P. chrysospoium, we carried out RT-PCR analysis using primers that designed based on the annotation data and sequenced data. Our result indicated that PcGHF74B was transcribed to several splicing variants in various culture conditions. Especially in the culture of 2% cellulose, three transcript products were observed. First transcript was presumed to be a full length ORF that contained 11th intron with stop codon at position 2562 bp. The second one consisted of 12 exons and 11 introns with stop codon at position 1187 bp with 7th exon. The shortest transcript consisted of 10 exons and 9 introns with stop codon at 910 bp in the 7th exon. These premature stop codon might prevent the synthesis of fully active GHF74 or contribute for the production of protein with distinct function depending on the ambient carbon sources.

셀룰로오스의 가수분해 기작을 구명하기 위하여 Phanerochaete chrysosporium으로부터 74A (PcGHF74A) 유전자를 클로닝한 결과 2162 bp의 염기서열에 해당하는 721개의 아미노산을 가지고 있으며, 다른 사상균에서 유래한 GHF74와 70~77%의 상동성을 나타냈다. Phanerochaete chrysosporium GHF74B (PcGHF74B)는 family 1에 속하는 Cellulose Binding Module (CBM)을 가지고 있으며 셀룰로오스 배양계에서 다양한 전사산물이 존재하였다. PcGHF74B 전사산물에서 나타난 splice variants를 조사하기 위해서 annotation data와 sequence data로부터 primer를 설계하여 RT-PCR분석을 수행하였으며 그 결과 다양한 배양조건에서 splice variants가 존재함을 확인하였다. 첫 번째는 annotation data와 다르게 11번째 intron을 포함하고 있어 full length로 추정되어지는 것으로 2562 bp에 stop codon이 존재했으며, 두 번째는 7번째 exon 1187 bp에 stop codon을 가지고 있으며 12개의 exon으로 구성되어 있다. 세 번째는 10개의 exon과 9개의 intron을 포함하고 있으며 7번째 exon에 stop codon이 존재했다. Splice variants로서 intron에 나타난 stop codon으로 인해 활성단백질의 합성이 일어나지 않을 것이며 비활성 단백질을 생성하거나 원래의 GHF74의 기능이 아닌 다른 새로운 기능을 갖는 단백질을 생성할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 서울대학교, 한국과학재단

References

  1. 안세희, 최인규. 1998 목질분해균에 의한 4,5,6- triguaiacol의 미생물 분해. 목재공학 26(3): 63- 72
  2. 이수민, 구본욱, 이재원, 최돈하, 정의배, 최인규. 2004. 옥틸페놀(4-t-octylphenol)의 Basidioradulum molare 와 Schizopora paradoxa에 의한 분해 빛 에스트로겐 성 저감 효과. 목재공학 32: 27-35
  3. 이수민, 박기령, 이성숙, 김명길, 최인규. 2005. 백색부후 균 Polyporus hrumalis에 의한 프탈산의 분해. 목재 공 학 33(1): 48-57
  4. 이재원, 양인, 五十嵐圭日子, 較鳥正浩, 최인규. 2005. 백 색 부후균 Phanerochaete chrysosporium에 유래 한 Manganese Peroxidase Gene ( mnp5)의 Pichia pastoris에서의 이종발현. 목재공학 33: 45-52
  5. 최인규, 안세희. 1998 목질 분해균에 의한 penta- chlorophenol 미생물 분해. 목재 공학 26(3): 53-62
  6. 최인규, 이재원, 최돈하. 2002. Monochlorophenol의 목질 분해균에 의한 분해 특성. 한국환경농학회지 21(4): 261- 268
  7. Elliott. D. J. 2000. Splicing and the single cell. Histol. Histopathol. 15: 239-249
  8. Foreman, P. K, D. Brown. L. Dankmeyer, R. Dean, S. Diener, N. S. Dunn-Coleman, F. Goedegebuur, T. D. Houfek, G. T. England, A. S. Kelley, H. J. Meerman, T. Mitchell, C. Mitchinson, H. A. Olivares, P. F. M. Teunissen, J. Yao, and M. Ward 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278(34): 31988-31997 https://doi.org/10.1074/jbc.M304750200
  9. Gold, M. H. and M. Alic. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microhiol Rev. 57: 605-622
  10. Hasper, A. A., E. Dekkers, M. van Mill, P. J. I. van de Vondervoort, and L. H. De Graaff. 2002. EglC, a New endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microhiol. 68(4): 1556-1560 https://doi.org/10.1128/AEM.68.4.1556-1560.2002
  11. Hu, G. K., S. Madore, B. Moldover, T. ]akoe, D. Balaban, J. Thomas, and Y. Wang. 2001. Predicting splice variant from DNA chip expression data. Genome Research. 1237 -1245
  12. Larrondo, L. F., B. Gonzalez, D. Cullen, and R. Vicuna. 2004. Characterization of a multicopper oxidase gene cluster in Phanerochaete chryso sporium and evidence of altered splicing of the mea transcripts. Microbiology 150: 2775- 2783 https://doi.org/10.1099/mic.0.27072-0
  13. Lopez, A. J. 1998. Alternative splicing of pre-Mrna: developmental consequence and mechanisms of regulation. Annu. Rev. Genet. 32: 273- 305
  14. Macarena, S., L. L. Fernando, V. Monica, V. Rafael, and G. Bernardo. 2005. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium. FEMS. 242: 37-44 https://doi.org/10.1016/j.femsle.2004.10.037
  15. Martinez, D., L. F. Larrondo, N. Putnam, M. D. S. Gelpke, K. Huang, J. Chapman, K. G. Helfenbein, P. Ramaiya, J. C. Detter, F. Larimer, P. M. Coutinho, B. Henrissat, R. Berka, D. Cullen, and D. Rokhsar. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature. 1-6
  16. Morales-Almora, P. and C. F. Thurston. 2003. Efficient isolation of genes differentially expressed on cellulose by suppression subtractive hybridi zation in Agaricus bisporus.. 107: 401-407 https://doi.org/10.1017/S0953756203007366
  17. Nelson, K. E., R. A. Clayton , S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. McDonald, T. R Utterback, J. A. Malek, K. D. Linher, M. M. Garrett , A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips, D. Richardson ,J. Heidelberg, G. G. Sutton , R. D. Fleischmann, O. White , S. L. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 399(6734): 323-329 https://doi.org/10.1038/20601
  18. Reddy, C. A. 1995. The potential of white rot fungi for the treatment of pollutants. Curr. Opin. Biochnol 6: 320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  19. Sims, P. F. G., M. S. Soares-Felipe, Q. Wang, M. E Gent, C. Tempelaars, and P. Broda. 1994. Differential expression of multiple exo-cellobiohydrolase 1-like genes in the lignin-degrading fungus Phanerochaete chrysosporium. Mol. MIcrobiol 12: 209-216 https://doi.org/10.1111/j.1365-2958.1994.tb01010.x
  20. Smith, C. W., J. G. Patton, and B. Nadal-Ginard 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23: 527-577 https://doi.org/10.1146/annurev.ge.23.120189.002523
  21. Takada, G., M. Kawasaki, M. Kitawaki, T. Kawaguchi, J. Sumitani, K. Izumori , and M. Arai. 2002. Cloning and transcription analysis of the Aspergillus aculeatus No. F-50 endoglucanase 2 (cmc2) gene J. Biosci Bioeng 94(5): 482-485 https://doi.org/10.1016/S1389-1723(02)80229-8
  22. Yadav, J., M. B. Soellner, J. C. Loper, and P. K Mishra. 2003. Tandem cytochrome P450 monooxygenase genes and splice variants in the white rot fungus Phanerochaete chrysosporium cloning, sequence analysis, and regulation of differential expression. Fungal Genet. Biol. 38: 10-21 https://doi.org/10.1016/S1087-1845(02)00508-X