Photocatalytic Activities of Titania Deposited Beads by FB-CVD as Operation Variables

유동층 화학기상증착(FB-CVD)으로 제조한 광촉매 박막증착 비드의 조업변수에 따른 반응성

  • Lim, Nam-Yun (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Lee, Seung Yong (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Park, Jaehyeon (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Kwak, Jini (Department of Material Engineering, Korea University of Technology and Education) ;
  • Park, Hai Woong (Department of Material Engineering, Korea University of Technology and Education)
  • 임남윤 (한국에너지기술연구원 청정시스템연구센터) ;
  • 이승용 (한국에너지기술연구원 청정시스템연구센터) ;
  • 박재현 (한국에너지기술연구원 청정시스템연구센터) ;
  • 곽지니 (한국기술교육대학교 신소재공학부) ;
  • 박해웅 (한국기술교육대학교 신소재공학부)
  • Received : 2005.05.11
  • Accepted : 2006.04.10
  • Published : 2006.06.30

Abstract

Photocatalyst deposited beads were prepared by fluidized bed chemical vapor deposition (FB-CVD) under various operating conditions of substrates, bed temperature, pressure, and oxygen concentration. Photocatalytic degradation of acetaldehyde was carried out to determine the optimum operating condition of prepared photocatalysts. They were characterized by using FE-SEM, XRD, and XPS. From the FE-SEM photographs, it was found that the surfaces of titania-coated beads were covered with crystal form, particle form, and slick form of titania on alumina, silica-gel, and glass beads, respectively. From the result of photocatalytic degradation of acetaldehyde, it was found that prepared titania/ alumina beads at $600^{\circ}C$, 5 torr showed superior performance to others, and oxygen flow rate has no significant effect.

유동층 화학기상 증착법으로 모재의 종류, 유동층 반응기 내부의 온도, 압력 그리고 산소유량 등의 여러 가지 조업변수들을 변화시키며 광촉매가 박막증착된 비드를 제조하였고 제조된 광촉매코팅비드의 광반응성 측정을 통해 최적조업조건을 결정하였다. 제조한 광촉매에 대하여 FE-SEM, XRD 그리고 XPS 분석을 수행하였고, 광반응성은 아세트알데히드의 분해능력을 측정하여 분석하였다. 광촉매가 박막증착된 비드의 FE-SEM 분석 결과 글라스 비드 위의 티타니아는 비교적 매끄럽게 증착되었고, 실리카 위의 티타니아는 입자의 형태로 증착되었으며 알루미나 위의 티타니아는 결정상을 이루며 증착됨을 확인할 수 있었다. 그리고 광반응성 측정 결과 알루미나를 모재로 사용하여 온도는 $600^{\circ}C$, 압력은 5 torr에서 제조하였을 때 아세트알데히드 광분해 반응에서 가장 높은 광반응성을 보였고, 산소 유량은 큰 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Jones, A. P., 'Indoor Air Quality and Health,' Atmos. Environ, 33(28), 4535-4564(1999) https://doi.org/10.1016/S1352-2310(99)00272-1
  2. Wargocki, P., Bako-Biro, Z., Clausen, G. and Fanger, P. O., 'Air Quality in a Simulated Office Environment as a Result of Reducing Pollution Sources and Increasing Ventilation,' Energy Build., 34(8), 775-783(2002) https://doi.org/10.1016/S0378-7788(02)00096-8
  3. Wolko., P. and Nielsen, G. D., 'Organic Compounds in Indoor air. Their Relevance for Perceived Indoor Air Quality,' Atmos. Environ., 35(26), 4407-4417(2001) https://doi.org/10.1016/S1352-2310(01)00244-8
  4. Fanger, P. O., 'Human Requirements in Future Air-conditioned Environments,' Int. J. Refrigerat., 24(2), 148-153(2001) https://doi.org/10.1016/S0140-7007(00)00011-6
  5. Racciatti, E., Vecchiet, J., Ceccomancini, A., Ricci, F. and Pizzigallo, E., 'Chronic Fatigue Syndrome Following a Toxic Exposure,' Sci. Total Environ., 270(1-3), 27-31(2001) https://doi.org/10.1016/S0048-9697(00)00776-2
  6. Sano, T., Negishi, N., Takeuchi, K. and Matsuzawa, S., 'Degradation of Toluene and Acetaldehyde with Pt-loaded TiO2 Catalyst and Parabolic Trough Concentrator,' Solar Energy., 77(5), 543-552(2004) https://doi.org/10.1016/j.solener.2004.03.018
  7. Vorontsov, A. V., Savinov, E. N., Barannik, G. B., Troitsky, V. N. and Parmon, V. N., 'Quantitative Studies on the Heterogeneous Gas-phase Photooxidation of Co and Simple VOCs by Air over TiO2,' Catal. Today, 39(3), 207-218(1997) https://doi.org/10.1016/S0920-5861(97)00102-8
  8. Alberici, R. M. and Jardim, W. F., 'Photocatalystic Destruction of VOCs in the Gas-phase Using Titanium Dioxide,' Appl. Catal. B: Environ., 14(1-2), 55-68(1997) https://doi.org/10.1016/S0926-3373(97)00007-6
  9. in Ollis, D. F. and Al-Ekabi, H. (eds). 'Photocatalytic Purification and Treatment of Water and Air,' Elsevier, Ontario(1992)
  10. Chen, J., Ollis, D. F., Rulkens, W. H. and Bruning, H, 'Kinetic Processes of Photocatalytic Mineralization of Alcohols on Metallized Titanium Dioxide,' Water Research, 33(5), 1173-1180(1999) https://doi.org/10.1016/S0043-1354(98)00307-8
  11. Tsai, S. and Cheng, S., 'Effect of $TiO_2$ Crystalline Structure in Photocatalytic Degradation of Phenolic Contaminants,' Catalysis Today, 33(1-3), 227-237(1997) https://doi.org/10.1016/S0920-5861(96)00172-1
  12. Fu, X., Clark, L. A. C., Yang, Q. and Anderson, M. A., 'Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: $TiO_2/SiO_2$ and $TiO_2/ZrO_2$,' Environ. Sci. Technol., 30(2), 647-653 (1996) https://doi.org/10.1021/es950391v
  13. Lassaletta, G., Fernandez, A., Espinos, J. P. and Gonzalez-Elipe, A. R., 'Spectroscopic Characterization of Quantum-Sized $TiO_2$ Supported on Silica; Influence of Size and $TiO_2-SiO_2$ Interface composition,' J. Phys. Chem., 99(5), 1484-1490(1995) https://doi.org/10.1021/j100005a019
  14. Flood, R. U. and Fitzmaurice, D., 'Preparation, Characterization, and Potential-Dependent Optical Absorption Spectroscopy of Unsupported Large-Area. Transparent Nanocrystalline $TiO_2$. Membranes,' J. Phys. Chem., 99(22), 8954-8958(1995) https://doi.org/10.1021/j100022a004
  15. Morishita, S. and Suzuki, K., 'Resolution and Peel Adhesion Strength of Photoelectrochemically Plated Copper Layers onto a $TiO_2$-Adhered Alumina Substrate,' Bull. Chem. Soc. Jpn., 67(8), 2354-(1994) https://doi.org/10.1246/bcsj.67.2354
  16. Kato, K., Tsuzuki, A., Taoda, H., Torii, Y., Kato, T. and Butsugan, Y., 'Crystal Structures of $TiO_2$ Thin Coatings Prepared from the Alkoxide Solution via the Dip-coating Technique Affecting the Photocatalytic Decomposition of Aqueous Acetic Acid,' J. Mater. Sci., 29(22), 5911-5915(1994) https://doi.org/10.1007/BF00366875