Effect of Blasted or Anodized Titanium Surface Roughness on Adhesion and Differentiation of Osteoblasts

블라스팅과 양극산화된 티타늄 표면이 조골세포의 부착 및 분화에 미치는 영향

  • Park, Chan-Jin (Department of Prosthodontics, College of Dentistry, Kangnung National University and Oral Science Institute) ;
  • Cho, Lee-Ra (Department of Prosthodontics, College of Dentistry, Kangnung National University and Oral Science Institute) ;
  • Yi, Yang-Jin (Department of Prosthodontics, College of Dentistry, Kangnung National University and Oral Science Institute) ;
  • Ko, Sung-Hee (Department of Pharmacology, College of Dentistry, Kangnung National University and Oral Science Institute)
  • 박찬진 (강릉대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 이양진 (강릉대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 고성희 (강릉대학교 치과대학 약리학교실 및 구강과학연구소)
  • Published : 2006.09.30

Abstract

The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks, blasted with $75{\mu}m$ aluminum oxide particles and anodic oxidized and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental groups, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental groups than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

Keywords

Acknowledgement

Supported by : 강릉대학교 치과병원

References

  1. Kasemo B, Lausmaa J. Aspect of surface physics on titanium implants. Swed Dent J 1983;28(Suppl.):19-36
  2. Lausmaa J, Kasemo B. Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 1990;45:133-46
  3. Olefjord I, Hansson S. Surface analysis of four dental implant systems. Int J Oral Maxillofac Impl 1993;8:32-40
  4. Johansson CB. On tissue reactions to metal implants. Thesis, University of Gteborg, Sweden, 1991
  5. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromor-phology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302-10
  6. Michaels CM, Keller JC, Stanford CM, Solursh M. In vitro cell attachment of osteoblast-like cells to titanium. J Dent Res 1989;68:276
  7. Boyan, BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z. Titanium surface roughness alters responsiveness of MG63 oteoblast-like cells to la, 25-$(OH)_2D_3$. J Biomed Mater Res 1998;39:77-85 https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  8. Boyan BD, Lossdorfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cell Mater 2003;6:22-27 https://doi.org/10.22203/eCM.v006a03
  9. Martin, JY, Schwartz Z, Hurnmert TW, Schraub DM, Simpson J, Lankford J Jr, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells(MG63). J Biomed Mater Res 1995;29:389-401 https://doi.org/10.1002/jbm.820290314
  10. Cochran DL, Simpson J, Weber H, Buser D. Attachment and growth of periodontal cells on smooth and rough-titanium. Int J Oral Maxillofac Implants 1994;9:289-97
  11. Batzer R, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Boyan BD, Schwartz Z. Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to I alpha,25-$(OH)_2D_3$. J Biomed Mater Res 1998;41:489-96 https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<489::AID-JBM20>3.0.CO;2-C
  12. Sisk M, Lohmann CH, Cochran DL, Sylvia VL, Simpson JP, Dean DD, Boyan BD, Schwartz Z. Inhibition of cyclooxygenase by indomethacin modulates osteoblast response to titanium surface roughness in a time-dependent manner. Clin Oral Implants Res 2001;12:52-61 https://doi.org/10.1034/j.1600-0501.2001.012001052.x
  13. Kieswetter K, Schwartz Z, Hurnmert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG63 cells. J Biomed Mater Res 1996;32: 55-63 https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  14. Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, Dean DD, Boyan BD. Local factor production by MG63 osteoblast-like cells in response to surface roughness and la, 25-$(OH)_2D_3$ is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials 2001;22:731-741 https://doi.org/10.1016/S0142-9612(00)00241-6
  15. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001;142:5050-5055 https://doi.org/10.1210/en.142.12.5050
  16. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res 2004;70:361-369
  17. Brunette DM. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp Cell Res 1986 ;164:11-26 https://doi.org/10.1016/0014-4827(86)90450-7
  18. Thomas K, Cook SD. An evaluation of variables influencing implant fixation and direct bone appostition. J Biomed Mater Res 1985;19:875-901 https://doi.org/10.1002/jbm.820190802
  19. D Buser, R K Schenk, S Steinemann, JP Fiorellini, CH Fox, H Stich. Influence of surface characteristics on bone integration of titanium implants: A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 https://doi.org/10.1002/jbm.820250708
  20. L Carlsson, T Rostlund, B Albrektsson, T Albrektsson. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3:21-24
  21. Suzuki K, Aoki K, Ohya K. Effects of surface rouglmess of titanium implants on bone remodeling activity of remour in rabbits. Bone 1997;21:507-514 https://doi.org/10.1016/S8756-3282(97)00204-4
  22. Hansson S, Norton M. The relation between surface rouglmess and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech 1999;32:829-836 https://doi.org/10.1016/S0021-9290(99)00058-5
  23. A Rich, AK Harrisl. Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J Cell Sci 1981;50:1-7
  24. HJ Wilke, L Claes, S Steineman. The influence of various titanium surfaces on the interface shear strength between implants and bone, in Clinical Implant Materials: Advances in Biomaterials, Elsevier, Amsterdam 1990;9:309-314
  25. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants. A review of proposed criteria of success. Int J Oral Maxillofac Implants 1986;1 :11-25
  26. Lincks J, Boyan BD, Cochran DL, Liu Y, Blanchard CR, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface rouglmess and composition. J Dent Res 1998;2219-2232
  27. Stefano G, Carlo G, Desiree M, Alessandro R, and Renato S. Different titanium surface treatment infuences human mandibular osteoblast response. J Periodontol 2004;75:273-282 https://doi.org/10.1902/jop.2004.75.2.273
  28. Lohmann CH, Bonewald LF, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z. Maturation state determines the response of osteogenic cells to surface rouglmess and la, 25-dihydroxyvitamin D3. J Bone Miner Res 2000;15:1169-1180 https://doi.org/10.1359/jbmr.2000.15.6.1169
  29. Schwartz Z., Lohmann CH, Cochran DL, Sylvia VL, Dean DD, Boyan BD. Bone regulating mechanism on implant surfaces. Proceedings of the 3rd European Workshop on Periodontology. Implant Dentistry. 1999;41-54
  30. Anselme K, Bigerelle M, Noel B, Dufresne E, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface rouglmess. J Biomed Mater Res 2000;49:155-166 https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
  31. Brugge PJ , Jansen JA. Initial interaction of rat bone marrow cells with non-coated and calcium phosphate coated titanium substrates. Biomaterials 2002;23:3269-3277 https://doi.org/10.1016/S0142-9612(02)00085-6
  32. Sui YT, Johansson CB, Jeong Y, R. oser K, Wennerberg A, Albrektsson T. Oxidised implants and their influence on the bone response. J Mater Sci Mater Med 2001;12:1025-31 https://doi.org/10.1023/A:1012837905910
  33. Sui YT, Johansson CB, Kang YM, Jeon DG, Albrektsson T. Bone reactions to oxidized titanium implants with electrochemically anion S and P incorporation. Clin Implant Dent Relat Res 2002;4:478-87
  34. Sui YT, Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants 2002;17:625-634
  35. Sui YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003;24:3893-3907 https://doi.org/10.1016/S0142-9612(03)00261-8