Synthesis of C9-Alcohol through C9-Aldehyde Hydrogenation over Copper Catalysts

구리 촉매 상에서 C9-알데히드의 수소화 반응에 의한 C9-알코올 합성

  • Park, Young-Kwon (Faculty of Environmental Engineering, University of Seoul) ;
  • Noh, Sang Gyun (Department of Chemical Engineering, Dongyang University) ;
  • Cho, Kyu Sang (School of Machine and Vehicle Design, Dongyang University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 박영권 (서울시립대학교 환경공학부) ;
  • 노상균 (동양대학교 생명화학공학과) ;
  • 조규상 (동양대학교 기계자동차디자인학부) ;
  • 전종기 (공주대학교 화학공학부)
  • Received : 2006.06.15
  • Accepted : 2006.07.12
  • Published : 2006.08.31

Abstract

This study selected the optimal catalyst for the process of producing $C_9$-alcohol by hydrogenating $C_9$-aldehyde, and carried out an experiment in order to establish the operating condition for maximizing the yield of $C_9$-alcohol. The BET surface area and the specific area of copper were most excellent in $CuO/ZnO/Al_2O_3$ (60:30:10 wt%) catalyst produced using acetate as a precursor of copper and $Na_2CO_3$ as a precipitant, and the catalyst also showed the highest performance in $C_9$-aldehyde hydrogenation. Using a trickle bed reactor loaded with optimized catalyst, we attained 94.1 wt% yield of $C_9$-alcohol under the condition of $175^{\circ}C$, 800 psi and $WHSV=3hr^{-1}$. According to the result of comparing with other catalysts used in the hydrogenation of aldehyde, the catalyst showed similar performance to that of Ni/kieselghur and higher than that of $Cu-Ni-Cr-Na/Al_2O_3$ and $Ni-Mo/Al_2O_3$. According to the result of examining the stability of the catalyst through a long-term catalysis test, the yield of $C_9$-alcohol decreased slowly after around 72 hours due to the increasing production of high boiling-point byproducts.

$C_9$-알데히드를 수소화하여 $C_9$-알콜을 제조하는 공정에 사용하기 위한 최적의 촉매를 선정하고, $C_9$-알콜의 수율을 극대화하기 위한 운전 조건을 확립하기 위한 실험을 수행하였다. 구리 전구체로 acetate를 사용하고 침전제로 $Na_2CO_3$를 사용하여 제조한 $CuO/ZnO/Al_2O_3$(60:30:10 wt%) 촉매의 표면적 및 구리 비표면적이 가장 우수하였으며 $C_9$-알데히드 수소화 반응에서도 가장 우수한 성능을 보였다. 최적화된 촉매를 장착한 trickle bed 반응기를 사용하여 $175^{\circ}C$, 800 psi, $WHSV=3hr^{-1}$의 조건에서 94.1 wt%의 $C_9$-알콜 수율을 얻었다. 알데히드의 수소화 반응에 사용되는 다른 촉매들과 비교한 결과 Ni/kieselghur 촉매와 유사한 성능을 보였으며 $Cu-Ni-Cr-Na/Al_2O_3$ 촉매 및 $Ni-Mo/Al_2O_3$ 촉매의 경우보다 우수한 성능을 보이는 것을 확인하였다. 장기 촉매 테스트를 통해서 촉매의 안정성을 확인한 결과 약 72시간 이후에는 고비점 부산물의 생성량 증가로 인하여 $C_9$-알콜의 수율이 약간씩 감소하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. He, D., Pang, D., Wang, T., Chen, Y., Liu, Y. and Zhu, Q., 'Hydroformylation of Mixture of Isomeric Octenes to $C_9$-aldehydes Catalyzed by Rh-Phosphine Oxide Complexes,' J. Mol. Catal. A: Chem., 174(1-2), 21-28(2001) https://doi.org/10.1016/S1381-1169(01)00167-4
  2. Jeon, J. K., Park, S. K. and Park, Y. K., 'Effects of Phosphorous Promoter on Catalytic Performance for Oligomerization of Butene over Ni-based Catalysts,' Catal. Today., 93-95, 467-470(2004)
  3. Jeon, J. K. and Park, Y. K., 'Selective Hydrogenation and Dimerization of $C_4$ fraction Containing 1,3-Butadiene,' J. Korean Ind. Eng. Chem., 14(5), 666-670(2003)
  4. Jeon, J. K. and Park, Y. K. and Kim, J. M., 'Hydroformylation of Mixed Octenes Using Rhodium-Bulky Phosphonite Complexes with High Catalytic Activity and Stability,' Chem. Lett., 33(2), 174-175(2004) https://doi.org/10.1246/cl.2004.174
  5. Tang, Z., Zhou, Y. and Feng, Y., 'Preparation of 2-propyl Heptanol by Catalytic Hydrogenation of 2-propyl Heptanal,' Appl. Catal. A: General, 273(1-2), 171-176(2004) https://doi.org/10.1016/j.apcata.2004.03.016
  6. Wang, X., Saleh, R. Y. and Ozkan, U. S., 'Reaction Network of Aldehyde Hydrogenation over Sulfided $Ni-Mo/Al_2O_3$ Catalysts,' J. Catal., 231(1), 20-32(2005) https://doi.org/10.1016/j.jcat.2004.12.010
  7. Schroder, U. and Andersson, B., 'Influence of Oxygen in the Gas-phase Hydrogenation of 2-ethyl-hexenal,' J. Catal., 132(2), 402-408(1991) https://doi.org/10.1016/0021-9517(91)90157-Y
  8. Tronconi, E., Lietti, L., Groppi, G., Forzatti, P. and Pasquon, I., 'Mechanistic Kinetic Treatment of the Chain Growth Process in Higher Alcohol Synthesis over a Cs-promoted Zn-Cr-O Catalyst,' J. Catal., 135(1), 99-114(1991)
  9. Sanchez-Delgado, R. G., Andriollo, A., De Ochoa, O. L., Suarez, T. and Valencia, N., 'Homogeneous Hydrogenation of Aldehydes to Alcohols with Ruthenium Complex Catalysts,' J. Organometallic Chemistry, 209(1), 77-83(1981) https://doi.org/10.1016/S0022-328X(00)88977-9
  10. Vargas, J. M. and Riley, Kenneth. L., 'Hydrogenation Catalyst with low Phosphorous Content for oxo Alcohol Process,' U.S. Patent No. 5,382,71(1995)
  11. Vargas, J. M., Riley, Agosto, M. and Kenneth, L., 'Hydrogenation Catalyst for Oxo Alcohol Process,' U.S. Patent No. 5,399,793 (1995)
  12. Deckers, G. and Horn, G., 'Hydrogenation of Aldehydes, Ketones, Carboxylic Acids and Esters,' U.S. Patent No. 5,569,792(1996).
  13. Deckers, G. and Horn, G., 'Copper Catalysts,' U.S. Patent No. 5,453,412(1993)
  14. Thurman, L. R. and Harris, J. B., 'Process for the Production of 2-ethylhexanol,' U.S. Patent No. 5,227,544(1993)
  15. Adam, K. and Haarer, E., 'Production of 2-ethylhexanol-(1) by Hydrogenation of 2-ethylhexen-(2)-al-(1),' U.S. Patent No. 4,021,497 (1977)
  16. Lueken, H. G., Tanger, U., Droste, W., Ludwig, G. and Gubisch, D., 'Process for the Preparation of 2-ethylhexanol by Liquidphase Catalytic Hydrogenation of 2-ethylhexenal, and Catalyst,' U.S. Patent No. 4,968,849(1988)
  17. Chinchen, G. C., Hay, C. M., Vandervell, H. D. and Waugh, K. C., 'The Measurement of Copper Surface Areas by Reactive Frontal Chromatography,' J. Catal., 103(1), 79-86(1987) https://doi.org/10.1016/0021-9517(87)90094-7
  18. Jeon, J. K., 'A Study on CO Hydrogenation over Pd/HZSM-5 Catalysts and $CO_2$ Hydrogenation over Copper-SAPO Hybrid Catalysts,' Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon(1995)