완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포

Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process

  • Quan, Zhe-Xue (Department of Microbiology and Microbial Engineering, Fudan University) ;
  • Lim, Bong-Su (Department of Environmental Engineering, Daejeon University) ;
  • Kang, Ho (Department of Environmental Engineering, Chungnam National University) ;
  • Yoon, Kyung-Yo (Donsung E&G Co. Ltd.) ;
  • Yoon, Yeo-Gyo (Donsung E&G Co. Ltd.)
  • 투고 : 2006.05.11
  • 심사 : 2006.09.21
  • 발행 : 2006.11.30

초록

SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.

키워드

과제정보

연구 과제 주관 기관 : 대전환경기술개발센터

참고문헌

  1. APHA, AWWA and WEF, Standard methods for the examination of water and wastewater, 20th Ed. (1998)
  2. Braker, G., Fesefeldt, A. and Witzel, K. P., Development of PCR Primer Systems for Amplification of Nitrite Reductase Genes (nirK and nil'S) to Detect Denitrifying Bacteria in Environmental Samples, Appl. Environ. Microbiol., 64, pp. 3769-3775 (1998)
  3. Egli, K., Bosshard, F., Weden, C., Lais, P., Siegrist, H., Zehnder, A. J. and Van der Meer, J. R., Microbial Composition and Structure of a Rotating Biological Contactor Biofilm Treating Ammonium-rich Wastewater without Organic Carbon, Microb. Ecol., 45, pp. 419-432 (2003) https://doi.org/10.1007/s00248-002-2037-5
  4. Gieseke, A., Bjerrum, L., Wagner, M. and Amann, R., Structure and Activity of Multiple Nitrifying Bacterial Populations Co-existing in a Biofilm, Environ. Microbiol., 5, pp. 355-369 (2003) https://doi.org/10.1046/j.1462-2920.2003.00423.x
  5. Hoshino, T., Terahara, T., Tsuneda, S., Hirata, A. and Inamori, Y., Molecular Analysis of Microbial Population Transition associated with the Start of Denitrification in a Wastewater Treatment Process, J. Appl. Microbiol., 99, pp. 1165-1175 (2005) https://doi.org/10.1111/j.1365-2672.2005.02698.x
  6. Kim, H. T., The Simultaneous Removal of Organic Matters and Nutrients using High-rate Anaerobic Reactor and Moving Media Intermittent Aeration Reactor, J. Environ. Sci. Health, A43, pp. 2657-2667 (1997)
  7. Kim, H. T., Randall, C. W. and Oh, S. H., Biological Nutrient Removal using a Submerged Moving Media Intermittent Aeration Reactor (SMMIAR), Adv. Environ. Res., 3, pp. 215-225 (1999)
  8. Kuenen, J. G. and Jetten, M. S. M., Extraordinary Anaerobic Ammonium Oxidising Bacteria, Amerian Society Microbiology News, 67, pp. 456-463 (2001)
  9. Kumar, S., Tamura, K., Jakobsen, I. B. and Nei, M., MEGA2: Molecular Evolutionary Genetics Analysis Software, Bioinformatics, 17, pp. 1244-1245 (2001) https://doi.org/10.1093/bioinformatics/17.12.1244
  10. Marsh, T. L., Terminal Restriction Fragment Length Polymorphism (T-RFLP): An Emerging Method for Characterizing Diversity among Homologous Populations of Amplification Products, Curr. Opin. Microbiol., 2, pp. 323-327 (1999) https://doi.org/10.1016/S1369-5274(99)80056-3
  11. Mulder, A., van de Graaf, A. A., Robertson, L. A, and Kuenen, J. G. (1995) Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor, FEMS Microbiol. Ecol., 16, pp. 177-183 (1995) https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  12. NCBI, http://www.ncbi.nih.go/ (accessed Apr 2006)
  13. Neef, A., Amann, R., Schlesner, H. and Schleifer, K. H., Monitoring a Widespread Bacterial Group: in situ Detection of Planctomycetes with 16S rRNA-targeted Probes, Microbiology, 144, pp. 3257-3266 (1998) https://doi.org/10.1099/00221287-144-12-3257
  14. Park, H. D. and Noguera, D. R., Evaluating the Effect of Dissolved Oxygen on Ammonia-oxidizing Bacterial Communities in Activated Sludge, Water Res., 38, pp. 3275-3286 (2004) https://doi.org/10.1016/j.watres.2004.04.047
  15. Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H. P. and Wagner, M., Phylogeny of All Recognized Species of Ammonia Oxidizers based on Comparative 16S rRNA and amoA Sequence Analysis: Implications for Molecular Diversity Surveys, Appl. Environ. Microbiol., 66, pp. 5368-5382 (2000) https://doi.org/10.1128/AEM.66.12.5368-5382.2000
  16. Pynaert, K., Smets, B. F., Wyffels, S., Beheydt, D., Siciliano, S. D., and Verstraete, W., Characterization of an Autotrophic Nitrogen-removing Biofilm from a Highly Loaded Lab-scale Rotating Biological Contactor, Appl. Environ. Microbiol., 69, pp. 3626-3635 (2003) https://doi.org/10.1128/AEM.69.6.3626-3635.2003
  17. Quan, Z. X., Bae, H. S., Baek, J. H., Chen, W. F., Im, W. T. and Lee, S. T., Rhizobium daejeonense sp. nov., Nickelcomplexed Cyanide-degrading Bacterium, Inter. J. Syst. Evol. Microbiol., 55, pp. 2543-2549 (2005) https://doi.org/10.1099/ijs.0.63667-0
  18. Quan, Z. X., Rhee, S. K., Bae, J. W., Baek, J. H., Park, Y. H. and Lee, S. T., Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-complexed Cyanides, J. Microbiol. Biotech., 16, pp. 232-249 (2006)
  19. Rotthauwe, J. H., Witzel, K. P. and Liesack, W., The Ammonia Monooxygenase Structural Gene amoA as a Functional Marker: Molecular Fine-scale Analysis of Natural Ammonia-oxidizing Populations, Appl. Environ. Microbiol., 63, pp. 4704-4712 (1997)
  20. Sacks, M. S., Incorporation of Experimentally-derived Fiber Orientation into a Structural Constitutive Model for Planar Collagenous Tissues, J. Biomech. Eng., 125, pp. 280-287 (2003) https://doi.org/10.1115/1.1544508
  21. Saitou, N. and Nei, M., The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 4, pp. 406-425 (1987)
  22. Satoh, H., Yamakawab, T., Kindaichi, T., Ito, T, and Okabe, S., Community Structures and Activities of Nitrifying and Denitrifying Bacteria in Industrial Wastewater-treating Biofilms, Biotechnol. Bioeng., DOI: 10.1002/bit.20894 (2006)
  23. Schmidt, I. and Bock, E., Anaerobic Ammonia Oxidation with Nitrogen Dioxide by Nitrosomonas Eutropha, Arch. Microbiol., 167, pp. 106-111 (1997) https://doi.org/10.1007/s002030050422
  24. Schmidt, I. and Bock, E., Anaerobic Ammonia Oxidation by Cell-free Extracts of Nitrosomonas eutropha, Antonie Van Leeuwenhoek, 73, pp. 271-278 (1998) https://doi.org/10.1023/A:1001572121053
  25. Strous, M., Fuerst, J. A., Kramer, E. H., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G. and Jetten, M. S., Missing Lithotroph Identified as New Planctomycete, Nature, 400, pp. 446-449 (1999) https://doi.org/10.1038/22749
  26. Strous, M. and Jetten, M. S., Anaerobic Oxidation of Methane and Ammonium, Annu. Rev. Microbiol., 58, pp. 99-117 (2004) https://doi.org/10.1146/annurev.micro.58.030603.123605
  27. Tal, Y., Watts, J. E. and Schreier, H. J., Anaerobic Ammonia-oxidizing Bacteria and Related Activity in Batimore Inner Harbor Sediment, Appl. Environ. Microbiol., 71, pp. 1816-1822 (2005) https://doi.org/10.1128/AEM.71.4.1816-1821.2005
  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G., The CLDSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools, Nucleic Acids Res., 25, pp. 4876- 4882 (1997) https://doi.org/10.1093/nar/25.24.4876
  29. Woese, C. R. and Fox, G. E., Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms, P. Natl. Acad. Sci. USA, 74, pp, 5088-5090 (1977)
  30. Yoshie, S., Noda, N., Tsuneda, S., Hirata, A. and Inamori, Y, Salinity Decreases Nitrite Reductase Gene Diversity in Denitrifying Bacteria of Wastewater Treatment Systems, Appl. Environ. Microbiol., 70, pp. 3152-3157 (2004) https://doi.org/10.1128/AEM.70.5.3152-3157.2004