금속알루미늄의 전기화학적 성질과 응용

Electrochemical Properties of Metal Aluminum and Its Application

  • 탁용석 (인하대학교 화학공학과) ;
  • 강진욱 (인하대학교 화학공학과) ;
  • 최진섭 (한국요업기술원 나노소재팀)
  • Tak, Yongsug (Department of Chemical Engineering, Inha University) ;
  • Kang, Jinwook (Department of Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2006.08.02
  • 발행 : 2006.08.10

초록

금속 알루미늄의 낮은 환원전위는 전기화학적 산화반응을 통하여 알루미늄과 그 표면에 존재하는 산화막의 구조 및 성질의 변화를 일으킨다. 산성용액에서 알루미늄을 전기화학적으로 에칭하여 표면적을 확대시키고 중성의 용액에서 알루미늄 표면에 치밀한 유전체 산화막을 형성시켜 커패시터의 전극으로 이용하고 있다. 저온의 산성용액에서는 양극산화시 나노크기의 다공층 산화막이 형성되며, 나노구조체의 템플레이트로 사용되고 있다. 이와같은 알루미늄의 전기화학적 특성은 알루미늄을 새로운 기능성을 가진 재료로 변화시킴으로서 다양한 분야에서 응용될 것으로 기대된다.

Metal aluminum, of which has a low standard reduction potential, participates in the electrochemical oxidation reaction and results in the structural change and accompanying property variation of aluminum and its oxide film. Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of high density etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the capacitor electrode. Anodization of aluminum in acid solution at low temperature makes a nanoporous aluminum oxide layer which can be used for the fabrication template of nanostructural materials. Electrochemical characteristics of aluminum turn the metal aluminum into functional materials and it will bring the diverse applications of metal aluminum.

키워드

참고문헌

  1. D. Pletcher and F. C. Walsh, Industrial Electrochemistry, second edition, 211, Chapman and Hall, New York (1990)
  2. W. D. Callister, Materials Science and Engineering: An Introduction, fifth edition, 340, John Wiley & Sons, New York (2000)
  3. I. Nagata, アルミニウム 乾式電解コンデンザ, 1, 日本蓄電器工業株式會社, 東京 (1983)
  4. 日本 輕金屬學會, アルミニウムの 組織と 性質, 110, 輕金屬學會, 東京 (1991)
  5. C. G. Dunn, R. B. Bolon, A. S. Alwan, and A. W. Stioling, J. Electrochem. Soc., 118, 13 (1971) https://doi.org/10.1149/1.2407928
  6. K. R. Hebert and R. C. Alkier, J. Electrochem. Soc., 135, 2247 (1971) https://doi.org/10.1149/1.2096247
  7. K. R. Hebert and R. C. Alkier, J. Electrochem. Soc., 135, 2146 (1971) https://doi.org/10.1149/1.2096231
  8. A. Hibino, M. Tamaki, Y. Watanabe, and T. Oki, Sumitomo Light Metal Technical Report, 33, 26 (1992)
  9. Y. Tak, Ph. D Thesis, Iowa state University, Ames, Iowa (1993)
  10. C. K. Dyer and R. S. Alwitt, J. Electrochem. Soc., 128, 300 (1981) https://doi.org/10.1149/1.2127408
  11. C. Edeleanu, J. lnst. Metals, 89, 90 (1960-1961)
  12. K. Arai, T. Suzuki, and T. Atsumi, J. Electrochem. Soc., 132, 1667 (1985) https://doi.org/10.1149/1.2114188
  13. M. Baumaartner and H. Kaesche, Corrosion Science, 31, 231 (1990) https://doi.org/10.1016/0010-938X(90)90112-I
  14. M. Baumaartner and H. Kaesche, Corrosion Science, 29, 363 (1989) https://doi.org/10.1016/0010-938X(89)90041-3
  15. R. Huang, K. R. Hebert, and L. S. Chumbley, J. Electrochem. Soc., 151, B379 (2004) https://doi.org/10.1149/1.1753582
  16. K. Muthukrishnan, K. R. Hebert, and T. Makino, J. Electrochem. Soc., 151, B340 (2004) https://doi.org/10.1149/1.1715091
  17. R. Huang, K. R. Hebert, T. Gessmann, and K. G. Lynn, J. Electrochem. Soc., 151, B227 (2004) https://doi.org/10.1149/1.1666148
  18. J. Choi, K. H. Lee, and Y. Tak, Electrochemistry., 69, 843 (2001)
  19. T. R. Beck, Electrochim. Acta, 33, 1321 (1988) https://doi.org/10.1016/0013-4686(88)80121-X
  20. R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, J. Electrochem. Soc., 131, 13 (1971)
  21. D. Goad, J. Electrochem. Soc., 144, 1965 (1997) https://doi.org/10.1149/1.1837730
  22. D. G. W. Goad and H. Uchi, J. Applied Electrochem., 30, 285 (2000) https://doi.org/10.1023/A:1003527316173
  23. C. F. Lin and K. R. Hebert, J. Electrochem. Soc., 137, 3723 (1990) https://doi.org/10.1149/1.2086293
  24. C. F. Lin, M. D. Porter, and K. R. Hebert, J. Electrochem. Soc., 141, 96 (1994) https://doi.org/10.1149/1.2054716
  25. C. F. Lin and K. R. Hebert, J. Electrochem. Soc., 141, 104 (1994) https://doi.org/10.1149/1.2054667
  26. Y. Tak, N. Shinha, and K. R. Hebert, J. Electrochem. Soc., 135, 4103 (2000)
  27. Y. Tak and K. R. Hebert, J. Electrochem. Soc., 141, 1453 (1994) https://doi.org/10.1149/1.2054945
  28. Y. Tak, E. R. Henderson, and K. R. Hebert, J. Electrochem. Soc., 141, 1446 (1994) https://doi.org/10.1149/1.2054944
  29. B. J. Wiersma, Y. Tak, and K. R. Hebert, J. Electrochem. Soc., 138, 371 (1991) https://doi.org/10.1149/1.2085592
  30. T. R. Beck, Eletrochim. Acta, 33, 1321 (1988) https://doi.org/10.1016/0013-4686(88)80121-X
  31. D. Park, Ph.D dissertation, Seoul National Univ. (2001)
  32. J. Kang, Y. Shin, and Y. Tak, Electrochim. Acta, 51, 1012 (2005) https://doi.org/10.1016/j.electacta.2005.04.070
  33. G. O. H. Whillock and B. F. Harvey, Ultrason. Sonochem., 3, 111 (1996) https://doi.org/10.1016/1350-1477(96)00002-U
  34. G. O. H. Whillock and B. F. Harvey, Ultrason. Sonochem., 4, 33 (1997)
  35. G. O. H. Whillock and B. F. Harvey, Ultrason. Sonochem., 4, 23 (1997) https://doi.org/10.1016/S1350-4177(96)00014-4
  36. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc., 100, 411 (1953) https://doi.org/10.1149/1.2781142
  37. J. P. O'Sulliva and G. C. Wood, Proc. Royal Soc. London Series A-Math. Phys. Sci., 317, 511 (1970)
  38. J. Choi, Ph.D dissertation, Martin-Luther-Univ. (2004)
  39. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, Nano Lett., 2, 677 (2002) https://doi.org/10.1021/nl025537k
  40. J. Oh, Y. Tak, and J. Lee, Electrochem. Solid-State Lett., 7, C27 (2004) https://doi.org/10.1149/1.1642575
  41. J. Lee, Y. Yun, J. Oh, and Y. Tak, Electrochim. Acta, 51, 1 (2005) https://doi.org/10.1016/j.electacta.2005.04.041