KOH 첨착 활성탄에서 황화수소의 흡착 특성

H2S Adsorption Characteristics of KOH Impregnated Activated Carbons

  • 최도영 (한국과학기술연구원 환경공정연구부) ;
  • 장성철 (한국과학기술연구원 환경공정연구부) ;
  • 공경택 (한국과학기술연구원 환경공정연구부) ;
  • 안병성 (한국과학기술연구원 환경공정연구부) ;
  • 최대기 (한국과학기술연구원 환경공정연구부)
  • Choi, Do-Young (Environment & Process Technology Division, Korea Institute of Science Technology) ;
  • Jang, Seong-Cheol (Environment & Process Technology Division, Korea Institute of Science Technology) ;
  • Gong, Gyeong-Tack (Environment & Process Technology Division, Korea Institute of Science Technology) ;
  • Ahn, Byoung-Sung (Environment & Process Technology Division, Korea Institute of Science Technology) ;
  • Choi, Dae-Ki (Environment & Process Technology Division, Korea Institute of Science Technology)
  • 투고 : 2006.01.31
  • 심사 : 2006.05.22
  • 발행 : 2006.06.10

초록

본 연구에서는 KOH를 첨착한 활성탄에서 황화수소의 흡착특성을 동특성 실험을 통해 관찰하였다. 특히 수분과 산소 농도가 흡착특성에 미치는 영향을 확인하였다. KOH를 첨착시킨 활성탄의 표면적, 세공부피 및 크기 분포 등의 기공 특성들은 질소 흡탈착 등온선을 이용하여 측정하였으며, 흡착량은 Langmuir와 Freundlich 등온식으로 모사하였으며 KOH를 첨착시킨 활성탄에서 황화수소의 흡착량은 Langmuir 등온식으로 잘 묘사되었다. 산소 농도의 증가는 KOH 첨착 활성탄의 황화수소 흡착성능에 큰 영향을 나타내었다.

Adsorption characteristics of $H_{2}S$ on KOH impregnated activated carbon were evaluated using dynamic adsorption method in a fixed bed. The pore properties, including BET's specific surface area, pore volume, pore size distribution, and mean pore diameter of these KOH impregnated activated carbons, were characterized from $N_{2}$ adsorption/desorption isotherms. Adsorption equilibrium data were correlated with Langmuir and Freundlich isotherms. The adsorption of $H_{2}S$ onto the KOH impregnated activated carbon is better fitted by the Langmuir isotherm. An increase in the content of oxygen affects the performance of KOH impregnated activated carbon to the greatest extent.

키워드

참고문헌

  1. 眞田雄三, 新版活性炭-基礎와 應用, 동화기술(2001)
  2. Y. H. Lee, H. J. Kim, and D. G. Choe, Perspectives of Ind. Chem., 5, 16 (2002)
  3. Langmuir, I. J. Am. Chem. Soc., 40, 1361 (1918) https://doi.org/10.1021/ja02242a004
  4. D. K. Ryu and S. H. Kim, J. Korean Ind. Eng. Chem., 9, 286 (1998)
  5. S. K. Lee, Y. S. Park, and Y. J. Lee, EER, 682, (2004)
  6. R. J. A. M. Terorde, P. J. van den Brink L. M. Visser, A. L. van Dillen, and J. W. Geus, Catalysis Today, 17, 217 (1993) https://doi.org/10.1016/0920-5861(93)80026-W
  7. P. J. van den Brink, A Scholten, A. Wageningen, M. D. A. Lamers, A. J. van Dillen, and J. W. Geus, Preparation of Catalysts V, ed. B. Delmon and J. T. Yates 63, 527, Elsevier, Amsterdam (1991)
  8. P. J. van den Brink, A Scholten, A. J. van Dillen, and J. W. Geus Catalyst Deactivation, ed. B. Delmon and J. T. Yates 68, 515, Elsevier, Amsterdam (1991)
  9. P. J. van den Brink, R. J. A. M. Terorde, J. H. Moors, A. J. van Dillen, and J. W. Geus, Catalyst Deactivation, ed. P. Ruiz and B. Delmon, 72, 123, Elsevier, Amsterdam (1991)
  10. A. Bagreev, S. Katikaneni, S. Parab, and T. J. Bandosz, Catalysis Today, 99, 329 (2005) https://doi.org/10.1016/j.cattod.2004.10.008