Vitexin, an HIF-1α Inhibitor, Has Anti-metastatic Potential in PC12 Cells

  • Choi, Hwa Jung (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Eun, Jae Soon (College of Pharmacy, Woosuk University) ;
  • Kim, Bang Geul (Institute of Oral Bioscience, Chonbuk National University) ;
  • Kim, Sun Yeou (Department of Medical Science, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jeon, Hoon (College of Pharmacy, Woosuk University) ;
  • Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
  • Received : 2006.07.26
  • Accepted : 2006.12.01
  • Published : 2006.12.31

Abstract

Vitexin, a natural flavonoid compound identified as apigenin-8-C-${\beta}$-D-glucopyranoside, has been reported to exhibit antioxidative and anti-inflammatory properties. In this study, we investigated its effect on hypoxiainducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) in rat pheochromacytoma (PC12), human osteosarcoma (HOS) and human hepatoma (HepG2) cells. Vitexin inhibited HIF-$1{\alpha}$ in PC12 cells, but not in HOS or HepG2 cells. In addition, it diminished the mRNA levels of hypoxia-inducible genes such as vascular endothelial growth factor (VEGF), smad3, aldolase A, enolase 1, and collagen type III in the PC12 cells. We found that vitexin inhibited the migration of PC12 cells as well as their invasion rates, and it also inhibited tube formation by human umbilical vein endothelium cells (HUVECs). Interestingly, vitexin inhibited the hypoxia-induced activation of c-jun N-terminal kinase (JNK), but not of extracellular-signal regulated protein kinase (ERK), implying that it acts in part via the JNK pathway. Overall, these results suggest the potential use of vitexin as a treatment for diseases such as cancer.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Aquino, R., Morelli, S., Lauro, M. R., Abdo, S., Saija, A., et al. (2001) Phenolic constituents and antioxidant activity of an extract of Anthuriumversicolor leaves. J. Nat. Prod. 64, 1019−1023
  2. Beitner-Johnson, D., Ferguson, T., Rust, R. T., Kobayashi, S., and Millhorn, D. E. (2002) Calcium-dependent activation of Pyk2 by hypoxia. Cell Signal. 14, 133−137 https://doi.org/10.1016/S0898-6568(01)00253-4
  3. Bos, R., van Diest, P. J., de Jong, J. S., van der Groep, P., van der Valk, P., et al. (2005) Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 46, 31−36 https://doi.org/10.1111/j.1365-2559.2005.02045.x
  4. Bussolati, B., Dunk, C., Grohman, M., Kontos, C. D., Mason, J., et al. (2001) Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am. J. Pathol. 159, 993−1008 https://doi.org/10.1016/S0002-9440(10)61775-0
  5. Cejudo-Martin, P., Morales-Ruiz, M., Ros, J., Navasa, M., Fernandez- Varo, G., et al. (2002) Hypoxia is an inducer of vasodilator agents in peritoneal macrophages of cirrhotic patients. Hepatology 36, 1172−1179 https://doi.org/10.1053/jhep.2002.36371
  6. Chen, Y., Zhang, Y. X., Li, M. H., Zhao, W. M., Shi, Y. H., et al. (2005) Antiangiogenic activity of 11,11′-dideoxyverticillin, a natural product isolated from the fungus Shiraia bambusicola. Biochem. Biophys. Res. Commun. 329, 1334−1342 https://doi.org/10.1016/j.bbrc.2005.02.115
  7. Conrad, P. W., Rust, R. T., Han, J., Millhorn, D. E., and Beitner- Johnson, D. (1999) Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J. Biol. Chem. 274, 23570−23576 https://doi.org/10.1074/jbc.274.33.23570
  8. Fang, J., Xia, C., Cao, Z., Zheng, J. Z., Reed, E., et al. (2005) Apigenin inhibits VEGF and HIF-1 expression via PI3K/ AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 19, 342−353 https://doi.org/10.1096/fj.04-2175com
  9. Flamme, I., Krieg, M., and Plate, K. H. (1998) Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. Am. J. Pathol. 153, 25−29 https://doi.org/10.1016/S0002-9440(10)65541-1
  10. Gaitan, E., Cooksey, R. C., Legan, J., and Lindsay, R. H. (1995) Antithyroid effects in vivo and in vitro of vitexin: a Cglucosylflavone in millet. J. Clin. Endocrinol. Metab. 80, 1144−1147
  11. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88−91 https://doi.org/10.1038/379088a0
  12. Hasebe, Y., Egawa, K., Yamazaki, Y., Kunimoto, S., Hirai, Y., et al. (2003) Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids. Biol. Pharm. Bull. 26, 1379−1383 https://doi.org/10.1248/bpb.26.1379
  13. Hien, T. V., Huong, N. B., Hung, P. M., and Duc, N. B. (2002) Radioprotective effects of vitexina for breast cancer patients undergoing radiotherapy with cobalt-60. Integr. Cancer Ther. 1, 38-34; discussion 42−33 https://doi.org/10.1177/153473540200100103
  14. Hodges, T. W., Hossain, C. F., Kim, Y. P., Zhou, Y. D., and Nagle, D. G. (2004) Molecular-targeted antitumor agents: the Saururus cernuus dineolignans manassantin B and 4-Odemethylmanassantin B are potent inhibitors of hypoxiaactivated HIF-1. J. Nat. Prod. 67, 767−771 https://doi.org/10.1021/np030514m
  15. Hollander, A. P., Corke, K. P., Freemont, A. J., and Lewis, C. E. (2001) Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum. 44, 1540−1544 https://doi.org/10.1002/1529-0131(200107)44:7<1540::AID-ART277>3.0.CO;2-7
  16. Hossain, C. F., Kim, Y. P., Baerson, S. R., Zhang, L., Bruick, R. K., et al. (2005) Saururus cernuus lignans--potent small molecule inhibitors of hypoxia-inducible factor-1. Biochem. Biophys. Res. Commun. 333, 1026−1033 https://doi.org/10.1016/j.bbrc.2005.05.191
  17. Hou, R. C., Huang, H. M., Tzen, J. T., and Jeng, K. C. (2003) Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J. Neurosci. Res. 74, 123−133 https://doi.org/10.1002/jnr.10749
  18. Ke, Q. and Costa, M. (2006) Hypoxia-inducible Factor-1 (HIF- 1). Mol. Pharmacol. 70, 1469−1480 https://doi.org/10.1124/mol.106.027029
  19. Kim, J. H., Lee, B. C., Kim, J. H., Sim, G. S., Lee, D. H., et al. (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch. Pharm. Res. 28, 195−202 https://doi.org/10.1007/BF02975131
  20. Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., et al. (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 63, 1138−1143
  21. Kwon, Y. W., Kwon, K. S., Moon, H. E., Park, J. A., Choi, K. S., et al. (2004) Insulin-like growth factor-II regulates the expression of vascular endothelial growth factor by the human keratinocyte cell line HaCaT. J. Invest. Dermatol. 123, 152−158 https://doi.org/10.1111/j.0022-202X.2004.22735.x
  22. Lee, E., Yim, S., Lee, S. K., and Park, H. (2002) Two transactivation domains of hypoxia-inducible factor-lalpha regulated by the MEK-1/p42/p44 MAPK pathway. Mol. Cells 14, 9−15
  23. Li, Y. L., Ma, S. C., Yang, Y. T., Ye, S. M., and But, P. P. (2002) Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol. 79, 365−368
  24. Matou, S., Colliec-Jouault, S., Galy-Fauroux, I., Ratiskol, J., Sinquin, C., et al. (2005) Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor- 2 or vascular endothelial growth factor in vitro. Biochem. Pharmacol. 69, 751−759 https://doi.org/10.1016/j.bcp.2004.11.021
  25. McNally, D. J., Wurms, K. V., Labbe, C., Quideau, S., and Belanger, R. R. (2003) Complex C-glycosyl flavonoid phytoalexins from Cucumis sativus. J. Nat. Prod. 66, 1280−1283 https://doi.org/10.1021/np030150y
  26. Mylonis, I., Chachami, G., Samiotaki, M., Panayotou, G., Paraskeva, E., et al. (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor 1$\alpha$. J. Biol. Chem. 281, 33095−33106 https://doi.org/10.1074/jbc.M605058200
  27. Osada, M., Imaoka, S., and Funae, Y. (2004) Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett. 575, 59−63 https://doi.org/10.1016/j.febslet.2004.08.036
  28. Page, E. L., Robitaille, G. A., Pouyssegur, J., and Richard, D. E. (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J. Biol. Chem. 277, 48403−48409 https://doi.org/10.1074/jbc.M209114200
  29. Park, J. W., Chun, Y. S., and Kim, M. S. (2004) Hypoxiainducible factor 1-related diseases and prospective therapeutic tools. J. Pharmacol. Sci. 94, 221−232 https://doi.org/10.1254/jphs.94.221
  30. Rajakumar, A., Doty, K., Daftary, A., Harger, G., and Conrad, K. P. (2003) Impaired oxygen-dependent reduction of HIF- 1alpha and -2alpha proteins in pre-eclamptic placentae. Placenta 24, 199−208 https://doi.org/10.1053/plac.2002.0893
  31. Semenza, G. L. (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J. Appl. Physiol. 96, 1173-1177; discussion 1170−1172 https://doi.org/10.1152/japplphysiol.00770.2003
  32. Semenza, G. L., Roth, P. H., Fang, H. M., and Wang, G. L. (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757−23763
  33. Soh, Y., Jeong, K. S., Lee, I. J., Bae, M. A., Kim, Y. C., et al. (2000) Selective activation of the c-Jun N-terminal protein kinase pathway during 4-hydroxynonenal-induced apoptosis of PC12 cells. Mol. Pharmacol. 58, 535−541
  34. Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103, 1237−1241 https://doi.org/10.1172/JCI6870
  35. Tabakman, R., Jiang, H., Levine, R. A., Kohen, R., and Lazarovici, P. (2004) Apoptotic characteristics of cell death and the neuneuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J. Neurosci. Res. 75, 499−507 https://doi.org/10.1002/jnr.20008
  36. Tomczyk, M., Gudej, J., and Sochacki, M. (2002) Flavonoids from Ficaria verna Huds. Z Naturforsch [C]. 57, 440−444
  37. Tsuzuki, Y., Fukumura, D., Oosthuyse, B., Koike, C., Carmeliet, P., et al. (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha $\rightarrow$ hypoxia response element $\rightarrow$ VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60, 6248−6252
  38. Vaupel, P. (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9 Suppl 5, 10−17
  39. Wenger, R. H. (2002) Cellular adaptation to hypoxia: O2- sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151−1162 https://doi.org/10.1096/fj.01-0944rev
  40. Zagorska, A. and Dulak, J. (2004) HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim. Pol. 51, 563−585
  41. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., et al. (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830−5835
  42. Zhou, Y. D., Kim, Y. P., Mohammed, K. A., Jones, D. K., Muhammad, I., et al. (2005) Terpenoid tetrahydroisoquinoline alkaloids emetine, klugine, and isocephaeline inhibit the activation of hypoxia-inducible factor-1 in breast tumor cells. J. Nat. Prod. 68, 947−950 https://doi.org/10.1021/np050029m