Hydrogen Gas Production from Biogas Reforming using Plasmatron

플라즈마트론을 이용한 바이오가스 개질로부터 수소생산

  • Kim, Seong Cheon (BK21 Team for Biohydrogen Production, Department Environmental Engineering, Chosun University) ;
  • Chun, Young Nam (BK21 Team for Biohydrogen Production, Department Environmental Engineering, Chosun University)
  • 김성천 (조선대학교 환경공학부, BK21 바이오가스 기반 수소생산 사업팀) ;
  • 전영남 (조선대학교 환경공학부, BK21 바이오가스 기반 수소생산 사업팀)
  • Received : 2005.06.27
  • Accepted : 2006.07.03
  • Published : 2006.10.31

Abstract

The purpose of this paper is to investigate the optimal operating condition for the hydrogen production by biogas reforming using the plasmatron induced thermal plasma. The component ratio of biogas($CH_4/CO_2$) produced by anaerobic digestion reactor were 1.03, 1.28, 2.12, respectively. And the reforming experiment was performed. To improve hydrogen production and methane conversion rates, parametric screening studies were conducted, in which there are the variations of biogas flow ratio(biogas/TFR: total flow rate), vapor flow ratio($H_2O/TFR$: total flow rate) and input power. When the variations of biogas flow ratio, vapor flow ratio and input power were 0.32~0.37, 0.36~0.42, and 8 kW, respectively, the methance conversion reached its optimal operating condition, or 81.3~89.6%. Under the condition mentioned above, the wet basis concentrations of the synthetic gas were H2 27.11~40.23%, CO 14.31~18.61%. The hydrogen yield and the conversion rate of energy were 40.6~61%, 30.5~54.4%, respectively, the ratio of hydrogen to carbon monoxide($H_2/CO$) was 1.89~2.16.

고온 플라즈마가 적용된 플라즈마트론을 이용하여 바이오가스 개질을 통해 수소를 생산하는데 있어서 최적 운전 조건에 대해 연구하였다. 음식물 쓰레기의 혐기성 발효조에서 생성된 바이오가스 구성비($CH_4/CO_2$)가 1.03, 1.28, 2.12인 바이오가스로 개질실험을 수행하고, 수소 생산과 메탄 전환율을 향상시키기 위해 바이오가스 유량비, 수증기 유량비, 입력전력 변화와 같은 변수별 연구를 수행하였다. 바이오가스 유량비(biogas/TFR : total flow rate), 수증기 유량비($H_2O/TFR$: total flow rate), 입력전력이 각각 0.32~0.37, 0.36~0.42, 8 kW일 때 메탄의 전환율이 81.3~89.6%인 최적운전조건을 보였다. 이때 합성가스 중의 수소와 일산화탄소의 농도는 27.11~40.23%, 14.31~18.61%이며, 수소 수율은 40.6~61%, 에너지 전환율은 30.5~54.4%, $H_2/CO$ 비는 1.89~2.16이다.

Keywords

References

  1. Beckhaus, P., Heinzel, A., Mathiak, J. and Roes, J., 'Dynamic of $H_{2}$ Production by Steam Reforming,' J. Power Sources, 127, 294-299(2004) https://doi.org/10.1016/j.jpowsour.2003.09.026
  2. Lutz, A. E., Bradshaw, R. W., Bromberg, L. and Rabinovich, A., 'Thermodynamic Analysis of Hydrogen Production by Partial Oxidation Reforming,' Int. J. Hydrogen Energy, 29, 809-816(2004) https://doi.org/10.1016/j.ijhydene.2003.09.015
  3. Wang, S. G., Li, Y. W., Lu, J. X., He, M. Y. and Jiao, H., 'A Detailed Mechanism of Thermal $CO_{2}$ Reforming of $CH_{4}$,' J. Molecular Structure, 673, 181-189(2004) https://doi.org/10.1016/j.theochem.2003.12.013
  4. Bromberg, L., Rabinovich, A., Alexeev, N. and Cohn, D. R., 'Plasma Reforming of Diesel Fuel,' PSFC/JA-99-4(1999)
  5. Hwang, B. B., Yeo, Y. K. and Na, B. K., 'Conversion of CH4 and $CO_{2}$ to Syngas and Higher Hydrocarbons Using Dielectric Barrier Discharge,' Korean J. Chem. Eng., 20(4), 631-634(2003) https://doi.org/10.1007/BF02706899
  6. Kim, S. S., Chung, S. H. and Kim, J. G., 'Nonthermal Plasmaassisted Diesel Reforming and Injection of the Reformed Gas into a Diesel Engine for Clean Combustion,' J. Korean Society Environmental Eng., 27(4), 394-401(2005)
  7. Supat, K., Chavadej, S., Lobban, L. L. and Mallison, R. G., 'Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas Under Electric Discharge,' Ind. Eng. Chem. Res., 42, 1654-1661(2003) https://doi.org/10.1021/ie020730a
  8. Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, N., Samokhin, A., Ramprasad, R. and Tamhankar, S., 'System Optimazation and Cost Analysis of Plasma Catalytic Reforming of Natural Gas,' Int. J. Hydrogen Energy, 25, 1157-1161(2000) https://doi.org/10.1016/S0360-3199(00)00048-3