Impregnation of Ibuprofen on MCM-41 using Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 MCM-41에의 Ibuprofen 함침

  • Kim, Hong-Lyong (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Kim, Jung-Teag (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Chun, Jae Kee (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Lee, Seok Hee (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Ju, Chang-Sik (Division of Applied Chemical Engineering, Pukyong National University)
  • 김홍룡 (부경대학교 응용화학공학부) ;
  • 김정택 (부경대학교 응용화학공학부) ;
  • 천재기 (부경대학교 응용화학공학부) ;
  • 이석희 (부경대학교 응용화학공학부) ;
  • 홍성수 (부경대학교 응용화학공학부) ;
  • 주창식 (부경대학교 응용화학공학부)
  • Received : 2006.02.02
  • Accepted : 2006.04.17
  • Published : 2006.06.30

Abstract

In order to develope an efficient drug delivery system, experimental researches on the supercritical impregnation of ibuprofen onto mesoporous silica, MCM-41,and its drug release characteristics were performed. Supercritical carbon dioxide was adapted as an alternative solvent as it is harmless and able to avoid defects of organic solvents in drug manufacturing processes. The procedure was composed of three steps, that is, as hydrothermal synthesis of MCM-41, supercritical impregnation of ibuprofen onto MCM-41 and release of impregnated ibuprofen. Supercritical impregnation reached equilibrium within 2 h for all cases of this research and the amount of equilibrium impregnation increased with solubility of ibuprofen in supercritical carbon dioxide. Release profiles of impregnated ibuprofen showed a similar behavior for all MCM-41 with different impregnated ibuprofen.

효율적인 약물 전달 시스템을 개발하기 위한 연구의 일환으로, 초임계 상태에서 mesoporous silica인 MCM-41에 항염증제 ibuprofen을 함침시키고, 그 방출효과를 실험적으로 조사하였다. 초임계 용매로는 기존의 약물 처리 공정에 사용되는 유기용매의 단점을 보완할 수 있는 무독성의 초임계 이산화탄소를 선택하였다. 실험은 수열합성법에 의한 MCM- 41의 합성, 초임계 이산화탄소에 의한 MCM-41에의 ibuprofen 함침 및 함침된 ibuprofen 용출의 세 공정으로 구성하였다. 초임계 함침 공정의 함침평형에 도달하는 시간은 본 연구의 조건 범위에서 약 2h 정도였으며, 평형 함침량은 초임계 이산화탄소에 대한 ibuprofen의 용해도 증가에 따라 증가하였다. Ibuprofen의 용출속도는 함침된 ibuprofen의 함량에 무관하게 유사한 형태의 용출 특성을 나타내었다.

Keywords

References

  1. Krukonis, V. J., 'Supercritical Fluid Nucleation of Difficult to Comminate Solids,' AIChE Annual Meeting, San Francisco, November(1984)
  2. Larson, K. A. and King, M. L., 'Evaluation of Supercritical Fluid. Extraction in the Pharmaceutical Industry,' Biotechnol. Prog., 2(2), 73-82(1983) https://doi.org/10.1002/btpr.5420020206
  3. Matson, D. W., Petersen, R. C. and Smith, R. D., 'The Preparation of Polycarbosilane Powders and Fibers during Rapid Expansion of Supercritical Fluid Solutions,' Mater. Lett., 4(10), 429-432 (1986) https://doi.org/10.1016/0167-577X(86)90113-8
  4. Mohamed, R. S., Halverson, D. S., Debenedetti, P. G. and Prud'homme, R. K., 'Supercritical Fluid Science and Technology,' ACS Symp. Ser., 406, 355-387(1989)
  5. Peterson, R. C., Matson, D. W. and Smith, R. D., 'Rapid Precipitation of Low Vapor Pressure Solids from Supercritical Fluid Solutions: The Formation of Thin Films and Powders,' J. Am. Chem. Soc., 108(7), 2100-2102(1986) https://doi.org/10.1021/ja00268a066
  6. Mohamed, R. S., Debenedetti, P. G. and Prud'homme, R. K., 'Effects of Process Conditions on Crystals Obtained from the Rapid Expansion of Supercritical Mixtures,' AIChE J., 35(2), 325-328(1989) https://doi.org/10.1002/aic.690350220
  7. Tavana, A. and Randolph, A. D., 'Manipulating Solids CSD in a Supercritical Fluid Crystallizer: $CO_2$-Benzolc Acid,' AIChE J., 35(10), 1625-1630(1989) https://doi.org/10.1002/aic.690351006
  8. Frank, S. G. and Ye, C., 'Small Particle Formation and Dissolution Rate Enhancement of Relatively Insoluble Drugs Using Rapid Expansion of Supercritical Solutions(RESS) Processing,' Proceedings(CD-ROM) of the Fifth International Symposium on Supercritical Fluids(2000)
  9. Charoenchaitrakool, M., Deghani, F., Foster, N. R. and Chan, H. K., 'Micronization by Rapid Expansion of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals,' Ind. Eng. Chem. Res., 39(12), 4794-4802(2000) https://doi.org/10.1021/ie000151a
  10. Foster, N. R., Dehghani, F., Charoenchaitrakool, M. and Warwick, B., 'Application of Dense Gas Techniques for the Production of the Fine Particles,' AAPS Pharm. Sci., 5, 105-111(2003)
  11. Guney, O. and Akgerman, A., 'Synthesis of Controlled Release Products in Supercritical Medium,' AIChE. J., 48(4), 856-866(2002) https://doi.org/10.1002/aic.690480419
  12. Kikic, I., Alessi, P., Cortesi. A., Eva, F., Fogar, A., Moneghini, M., Perissutti, B. and Voinovich, D., 'Supercritical Antisolvent Precipitation Processes: Different Methods for Improving the Performances of Drugs,' Chemical Enginnering Transactions, 2, 821-826(2002)
  13. Ginty, P. J., Whitaker, M. J., Shaksheff, K. M. and Howdle, S. M., 'Drug Delivery Goes Supercritical,' Materials today, 8(8), 42-48(2005)
  14. Charnay, C., Bgu, S., Tourn-Pteilh, C., Nicole, L., Lerner, D. A. and Devoisselle, J. M., 'Inclusion of Ibuprofen in Mesoporous Templated Silica: Drug Loading and Release Property,' European J. of Pharmaceutics and Biopharmaceutics, 57(3), 533-540(2004) https://doi.org/10.1016/j.ejpb.2003.12.007
  15. Andersson, J., Rosenholm, J., Areva, S. and Lindn, M., 'Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices,' Chem. Mater., 16(21), 4160-4167(2004) https://doi.org/10.1021/cm0401490
  16. Ciesla, U. and F. Schuth, 'Ordered Mesoporous Materials,' Microporous Mesoporous Mater., 27(2/3), 131-149(1999) https://doi.org/10.1016/S1387-1811(98)00249-2
  17. Grun, M., Lauer, I. and Unger, K. K., 'The Synthesis of Micrometerand Submicrometer-Size Spheres of Ordered Mesoporous Oxide MCM-41,' Adv. Mater., 9(3), 254-257(1997) https://doi.org/10.1002/adma.19970090317
  18. Davies, N. M., 'Clinical Pharmacokinetics of Ibuprofen: The First 30 Years,' Clin Pharmacokinet, 34(2), 101-154(1998) https://doi.org/10.2165/00003088-199834020-00002
  19. Vallet-REgi, M., Ramila, A., del Real, R. P. and Perez-Pariente, J., 'A New Porperties of MCM-41: Drug Delivery System,' Chem. Mater., 13(2), 308-311(2001) https://doi.org/10.1021/cm0011559
  20. Loth, H. and Hemgesberg, E., 'Properties and Dissolution of Drugs Micronization by Crystallization from Supercritical Gases,' Int. J. Pharm., 32(2/3), 265-367(1986) https://doi.org/10.1016/0378-5173(86)90188-2