Characteristics of Disinfection Byproducts in Tap Water of Seoul

서울시 수돗물 배급수 계통에서 소독부산물 분포특성

  • Chang, Hyun Seong (Waterworks Research Institute, Seoul Metropolitan Government) ;
  • Lee, Do Weon (Department of Chemical Engineering, University of Seoul) ;
  • Kim, Chang Mo (Waterworks Research Institute, Seoul Metropolitan Government) ;
  • Lee, In Suk (Waterworks Research Institute, Seoul Metropolitan Government) ;
  • Lee, Su Won (Waterworks Research Institute, Seoul Metropolitan Government) ;
  • Park, Hyeon (Waterworks Research Institute, Seoul Metropolitan Government)
  • 장현성 (서울특별시 상수도연구소) ;
  • 이도원 (서울시립대학교 화학공학과) ;
  • 김창모 (서울특별시 상수도연구소) ;
  • 이인숙 (서울특별시 상수도연구소) ;
  • 이수원 (서울특별시 상수도연구소) ;
  • 박 현 (서울특별시 상수도연구소)
  • Received : 2005.12.28
  • Accepted : 2006.03.05
  • Published : 2006.04.30

Abstract

Total trihalomethanes (THMs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) that are the major disinfection byproducts (DBPs) are monitored continuously in drinking water in Seoul. Study on characteristics of DBPs is crucial to judge the safety of drinking water in Seoul. Analysis of THMs, haloacetonitriles (HANs), chloral hydrate (CH), and haloacetic acids (HAAs) was carried out in several distribution systems from January 2002 to December 2004. The concentration of THMs was 0.015 mg/L in purified water, 0.019 mg/L in tapwater by direct service, and 0.023 mg/L in tapwater through watertank, respectively. It might be due to the increased contact time with chlorine by a process of the distribution system. And the other DBPs show a tendency to increase in its concentration by a process of the distribution system. Also, in summer, the concentration of DBPs was higher than in spring and winter. It might be due to the higher temperature of water in summer. In all cases, the quantities of detected DBPs were 4-6 times lower than those of regulation limits of drinking water in Seoul. In view of these results, the tapwater in Seoul is good to drink it all the times.

클로로포름(chloroform), 디클로로아세틱에시드(dichloroacetic acid; DCAA), 트리클로로아세틱에시드(trichloroacetic acid; TCAA) 등은 먹는 물의 염소소독 시 발생되는 주요한 소독부산물이다. 이 중 클로로포름과 DCAA는 발암물질로 분류되어 있어 이에 대한 분포특성연구는 서울시의 먹는 물의 안전성을 판단하기 위해 중요하다. 2002~2004년의 3년 동안 배급 수 계통별로 소독부산물을 분석하였다. 이 중 총트리할로메탄(total trihalomethanes; THMs)의 평균 농도가 정수장에서 생산된 물에서는 0.015 mg/L, 직접 각 가정으로 공급되는 직수에서는 0.019 mg/L, 물탱크를 경유해 각 가정으로 공급되는 물탱크 수에서는 0.023 mg/L로 체류시간이 증가함에 따라 그의 농도는 증가하는 것으로 나타났다. 또한, 수온의 영향으로 인해 여름철에 비교적 높은 농도로 검출되었다. THMs 이외의 다른 소독부산물들도 역시 유사한 경향을 나타내었다. 검출된 소독부산물의 양은 환경부 먹는물 수질기준의 1/4~1/6 정도의 낮은 수준이기 때문에 서울시 수돗물은 소독부산물에 있어 항상 안전한 것으로 나타났다.

Keywords

References

  1. http://www.klaw.go.kr/CNT2/Easy/MCNT2EasyLawService.jsp?s_lawmst=71570
  2. http://www.me.go.kr/DEPTDATA/200101/09172451/agamsi.htm
  3. Rho, B. S. and Ha, H. J., 'Water Quality Analysis in 2002,' The Annual Report of Waterworks Research Institute Seoul Metropolitan Government, 4th ed., 70-75(2002)
  4. Chang, H. S. and Kim, C. M., 'A Study on Quality Control Application and Assessment in Chlorinated Disinfection Byproducts Analysis,' The Annual Report of Waterworks Research Institute Seoul Metropolitan Government, 4th ed., 143-152(2002)
  5. WHO, Guidelines for Drinking-water Quality, 3rd ed., (2004)
  6. Nam, S. H. and Lee, U. G., 'A Study on The Evaluation of Influencing Factors in THM Analysis,' Kor. J. Environ. Health Soc., 18(2) 82-91(1992)
  7. Min, B. S., Rhee, D. S., Ryu, J. K. and Park, S. K., 'Formation Characteristics of Haloacetic Acids in Water Treatment Plant,' J. Kor. Soc. Environ. Anal., 6(1), 41-48(2003)
  8. Singer, P. C., Obolensky, A. and Greiner, A., 'DBPs in Chlorinated North Carolina Drinking Waters,' J. AWWA, 87(10), 83-92 (1995)
  9. Reckhow, D. A., Platt, T. L., MacNeill, A. L. and McClellan, J. N., 'Formation and Degradation of Dichloroacetonitrile in Drinking Waters,' J. IWA. AQUA, 50(1), 1-13(2001)
  10. Kim, Y. Y., 'Formation and Control of Disinfection By-products in Water Treatment Process,' Master Thesis, Chonbuk National University, Chonbuk, Korea(2002)
  11. Kim, H. S., 'Characterization of Dissolved Organic Matter in Water Treatment Processes for Han River Water,' Ph.D. Dissertation, The University of Seoul, Seoul, Korea(2004)
  12. Pome, M. L., Green, W. R., Thurman, E. M., Orem, W. H. and Lerch, H. E., 'DBP Formation Potential of Aquatic Humic Substances,' AWWA, 91(3), 103-114(1999) https://doi.org/10.1002/j.1551-8833.1999.tb08604.x
  13. Barrott, L., 'Chloral Hydrate: Formation and Removal by Drinking Water Treatment,' J. IWA. AQUA, 53(6), 381-390(2004)
  14. Method 524.2 : Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry., National Exposure Research Laboratory, U.S. Environmental Protection Agency(1992)
  15. Method 551.1 : Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron Capture Detection., National Exposure Research Laboratory, U.S. Environmental Protection Agency (1995)
  16. Method 552.2 : Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Extraction, Derivatization, and Gas Chromatography with Electron Capture Detection., National Exposure Research Laboratory, U.S. Environmental Protection Agency(1995)
  17. Method 552.3 : Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Extraction, Derivatization, and Gas Chromatography with Electron Capture Detection., National Exposure Research Laboratory, U.S. Environmental Protection Agency(2003)
  18. Chung, K. J., Lee, S. W. and Chang, H. S., 'Tap Water Quality Analysis in 2004,' The Annual Report of Waterworks Research Institute, Seoul Metropolitan Government(2004)., http://water.seoul.go.kr