계면활성제가 담지된 메조포러스 실리케이트에 의한 수중 납이온 제거

Removal of Pb2+ Ions from Water by Surfactant-templated Mesoporous Silicates

  • 최현석 (울산대학교 생명화학공학부) ;
  • 이동규 (울산대학교 생명화학공학부) ;
  • 조국진 (울산대학교 생명화학공학부) ;
  • 이채영 (울산대학교 생명화학공학부) ;
  • 정진석 (울산대학교 생명화학공학부) ;
  • 유익근 (울산대학교 생명화학공학부) ;
  • 신은우 (울산대학교 생명화학공학부)
  • Choi, Hyun Suk (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Lee, Dong Gue (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Cho, Guk Jin (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Lee, Chae Young (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Chung, Jin Suk (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Yoo, Ik-keun (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Shin, Eun Woo (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 투고 : 2005.11.23
  • 심사 : 2006.01.24
  • 발행 : 2006.04.30

초록

메조포러스 실리케이트 물질은 포어 내에 thiol(-SH)기나 amine($-NH_2$)기 등의 관능기를 도입하여 수중의 중금속이온을 제거하는 흡착제로 많이 활용되어왔다. 본 연구는 메조포러스 실리케이트 합성에서 구조형성 전구체로 사용되는 계면활성제가 중금속 이온의 흡착활성점으로도 작용하는지를 조사하고자 하였다. 서로 다른 계면활성제를 사용하는 세가지 메조포러스 실리케이트(SBA-15, MCM-41, HMS)을 합성하여 소성 전 계면활성제가 담지되어 있는 경우와 소성되어 계면활성제가 사라진 경우에 이들의 수중 납이온의 흡착거동을 살펴보았다. 먼저, X선 회절분석 실험과 질소 기체 흡착 거동으로 메조포러스 실리케이트의 메조포어 구조를 확인하였고, FT-IR 분석을 통해 소성 전의 계면활성제의 존재와 소성 후에 계면활성제의 제거를 확인하였다. 중금속인 납이온을 사용하여 이들의 흡착능을 측정한 결과, 모든 소성된 메조포러스 실리케이트 물질과 공중합 고분자를 계면활성제로 이용하는 SBA-15는 수중에서 납이온에 대한 흡착능이 극히 미비한 반면에 각각 dodecylamine과 hexadecyltrimethylammoniumbromide(HDTMA)를 계면활성제로 사용하는 HMS, MCM-41은 소정의 흡착능을 보여주었다. 초기 납이온 농도가 50 ppm, 용액 pH가 5인 흡착 조건에서 얻은 흡착 키네틱 데이터를 pseudo second order kinetic model에 적용하여 계산한 결과, 계면활성제가 담지된 HMS는 115.16 mg/g, 계면활성제가 담지된 MCM-41은 26.60 mg/g의 납이온 흡착능을 나타내었다. 이러한 흡착능은 기존의 다른 메조포러스 실리케이트 흡착제의 흡착능과 유사하며, 그들과 비교하여 계면활성제가 담지된 흡착제는 전처리나 후처리 없이 흡착제로 활용할 수 있는 장점을 가지고 있다.

Mesoporous silicate materials have been used as adsorbents for the removal of heavy metals from water by introducing functional groups such as thiol and amine. In this research, it was investigated whether surfactants used as templating agents in synthetic processes can act as adsorption sites for heavy metals. Three mesoporous silicates-SBA-15, MCM-41, and HMS were synthesized using, respectively, block copolymer, hexadecyltrimethylammoniumbromide (HDTMA), and dodecyamine as surfactants. X-ray diffraction and $N_2$ gas adsorption analysis confirmed that the mesoporous silicates were well prepared and FT-IR spectra resulted in the existence of the surfactants in as-synthesized mesoporous silicates and the removal of surfactants after calcination. The interactions between $Pb^{2+}$ ions and the mesoporous silicate materials with/without surfactants were observed. In adsorption kinetic experiments, it revealed that the calcined mesoporous silicates and the surfactant-loaded SBA-15 almost had no adsorption capacity for $Pb^{2+}$ ions. In contrast, the surfactant-loaded MCM-41 and HMS showed, respectively, the adsorption capacities of 26.60 and 115.16 mg/g which were acquired through the fits of adsorption kinetic data to the pseudo second order kinetic model. The adsorption capacities were comparable to those of other mesoporous adsorbents for heavy metals.

키워드

과제정보

연구 과제 주관 기관 : 울산대학교

참고문헌

  1. Gaballah, I. and Kilbertus, G., 'Recovery of Heavy Metal Ions Through Decomposition of Synthetic Solutions and Industrial Effluents Using Modified Barks,' J. of Geochemical Exploration, 62(19), 241-286(1998) https://doi.org/10.1016/S0375-6742(97)00068-X
  2. Saeed, A., Iqbal, M. and Akhtar, M. W., 'Removal and Recovery of Lead(II) from Single and Multimetal(Cd, Cu, Ni, Zn) Solutions by Crop Milling Waste (black gram husk),' J. of Hazardous Materials B, 117(10), 65-73(2005) https://doi.org/10.1016/j.jhazmat.2004.09.008
  3. Forster, C. F. and Wase, D. A. J., 'Biosorption of Heavy Metals: An Introduction,' in Biosorbents for metal ions edited by Wase, J. and Forster, C., 1-10, Taylor & Francis, London(1997)
  4. Karvelas, M., Katsoyiannis, A. and Samara, C., 'Occurrence and Fate of Heavy Metals in the Wastewater Treatment Process,' Chemo-sphere, 53(2), 1201-1210(2003) https://doi.org/10.1016/S0045-6535(03)00591-5
  5. Dabrowski, A., Hubicki, Z., Podkoscielny, P. and Robens, E., 'Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-exchange Method,' Chemosphere, 56(1), 91-106(2004) https://doi.org/10.1016/j.chemosphere.2004.03.006
  6. Davis, T. A., Volesky, B. and Mucci, A., 'A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae,' Water Res., 37(1), 4311-4330(2003) https://doi.org/10.1016/S0043-1354(03)00293-8
  7. Reddad, Z., Gerente, C., Andres, Y. and Le Cloirec, P., 'Adsorption of Several Metal Ions Onto a Low-cost Biosorbent: Kinetic and Equilibrium Studies,' Enviorn. Sci. Technol., 36(28), 2067-2073(2002) https://doi.org/10.1021/es0102989
  8. Shin, E. W. and Rowell, R. M., 'Cadmium Ion Sorption Onto Lignocellulosic Biosorbent Modified by Sulfonation: The Origin of Sorption Capacity Improvement,' Chemosphere, 60(8), 1054-1061 (2005) https://doi.org/10.1016/j.chemosphere.2005.01.017
  9. Ouki, S. K. and Kavannagh, M., 'Treatment of Metals-contaminated Wastewaters by Use of Natural Zeolites,' Water. Sci. Technol., 39(16), 115-122(1999)
  10. Pitcher, S. K., Slade, R. C. T. and Ward, N. I., 'Heavy Metal Removal from Motorway Stormwater using Zeolites,' Sci. of the Total Environ., 334(17), 161-166(2004) https://doi.org/10.1016/j.scitotenv.2004.04.035
  11. Bois, L., Bonhomme, A., Ribes, A., Pais, B., Raffin, G. and Tessier, F., 'Functionalized Silica for Heavy Metal Ions Adsorption,' Colloids and Surfaces A: Physicochem. Eng. Aspects, 221(23), 221-230(2003) https://doi.org/10.1016/S0927-7757(03)00138-9
  12. Liu, A. M., Hidajat, K., Kawi, S. and Zhao, D. Y., 'A New Class of Hybrid Mesoporous Materials with Functionalized Organic Monolayers for Selective Adsorption of Heavy Metal Ions,' Chem. Commun., 1145-1146(2000)
  13. Brown, J., Richer, R. and Mercier, L., 'One-step Synthesis of High Capacity Mesoporous $Hg^{2+}$ Adsorbents by Non-ionic Surfactant Assembly,' Micropor. Mesopor. Mater, 37(5), 41-48(2000) https://doi.org/10.1016/S1387-1811(99)00191-2
  14. Algarra, M., Jimenez, V., Rodriquez-Castellon, E., Jimenez-Lopez, A. and Jimenez-Jimenez, J., 'Heavy Metals Removal from Electroplating Wastewater by Aminopropyl-Si MCM-41,' Chemosphere, 59(4), 779-786(2005) https://doi.org/10.1016/j.chemosphere.2004.11.023
  15. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., 'Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism,' Nature, 359, 710-712(1992) https://doi.org/10.1038/359710a0
  16. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D., 'Triblock Copolymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,' Science, 279, 548-552(1998) https://doi.org/10.1126/science.279.5350.548
  17. Kruk, M., Jaroniec, M., Ko, C. H. and Ryoo, R., 'Charaterization of the Porous Structure of SBA-15,' Chem. Mater., 12(27), 1961-1968(2000) https://doi.org/10.1021/cm000164e
  18. Walcarius, A., Etienne, M. and Delacote, C., 'Uptake of Inorganic HgII by Organically Modified Silicates: Influence of pH and Chloride Concentration on the Binding Pathways and Electrochemical Monitoring of the Processes,' Analytica Chimica Acta, 508(12), 87-98 (2004) https://doi.org/10.1016/j.aca.2003.11.055
  19. Shin, E. W., Han, J. S., Jang, M., Min, S.-H., Park, J. K. and Rowell, R. M., 'Phosphate Adsorption on Aluminum-impregnated Mesoporous Silicates: Surface Structure and Behavior of Adsorbents,' Environ. Sci. Technol., 38(35), 912-917(2004) https://doi.org/10.1021/es030488e
  20. Feng, X., Fryxell, G. E., Wang, L.-Q., Kim, A. Y., Liu, J. and Kemner, K. M., 'Functionalized Monolayers on Ordered Mesoporous Supports,' Science, 276, 923-926(1997) https://doi.org/10.1126/science.276.5314.923
  21. Zhao, H., Nagy, K. L., Waples, J. S. and Vance, J., 'Surfactanttemplated Mesoporous Silicate Materials as Sorbents for Organic Pollutants in Water,' Environ. Sci. Technol., 34(25), 4822-4827(2000) https://doi.org/10.1021/es000990o
  22. Mercier, L. and Pinnavaia, T. J., 'Heavy Metal Ion Adsorbent Formed by the Grafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves: Factors Affecting Hg(II) Uptake,' Environ. Sci. Technol., 32(14), 2749-2754(1998) https://doi.org/10.1021/es970622t
  23. Jeon, C., Park, J. Y. and Yoo, Y. J., 'Characteristics of Metal Removal Using Carboxylated Alginic Acid,'Water Res., 36(17), 1814-1824 (2002) https://doi.org/10.1016/S0043-1354(01)00389-X
  24. Ho, Y. S. and McKay, G., 'The Kinetics of Sorption of Divalent Metal Ions Onto Sphagnum Moss Peat,' Water Res., 34(4), 735-742 (2000) https://doi.org/10.1016/S0043-1354(99)00232-8
  25. Jang, M., Park, J. K. and Shin, E. W., 'Lanthanum Functionalized Highly Ordered Mesoporous Media for Arsenic Removal,' Micropor. Mesopor. Mater., 75(20), 159-168(2004) https://doi.org/10.1016/j.micromeso.2004.05.018
  26. Sayari, A., Hamoudi, S. and Yang, Y., 'Applications of Poreexpanded Mesoporous Silica. 1. Removal of Heavy Metal Cations and Organic Pollutants from Wastewater,' Chem. Mater., 17(34), 212-216(2005) https://doi.org/10.1021/cm048393e