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Abstract : This study focuses on the application of multi-criteria performance measures based on the
concept of equifinality to the calibration of the rainfall-runoff model TOPMODEL in a small deciduous
forest catchment. The performance of each parameter set was evaluated by six performance measures,
individually, and each set was identified as a behavioral or non-behavioral parameter set by a given
behavioral acceptance threshold. Many behavioral parameter sets were scattered throughout the parameter
space, and the range of model behavior and the sensitivity for each parameter varied considerably between
the different performance measures. Sensitivity was very high in some parameters, and varied depending
on the kind of performance measure as well. Compatibilities of behavioral parameter sets between different
performance measures also varied, and very few parameter sets were selected to be used in making good
predictions for all performance measures. Since different behavioral parameter sets with different likelihood
weights were obtained for each performance measure, the decision on which performance measure to be
used may be very important to achieve the goal of study. Therefore, one or more suitable performance
measures should be selected depending on the environment and the goal of a study, and this may lead to
decrease model uncertainty.
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Introduction

The rainfall-runoff process, which is an important
compartment of the hydrological system, is very com-
plex considering the large number of factors involved
and their variability in time and space. Hydrological
modeling is a powerful technique to represent the rain-
fall-runoff process in various physical or mathematical
forms using known or assumed functions expressing the
various components of a rainfall-runoff response (Ndi-
ritu and Daniell, 1999). In the last half-century there
have been hundreds of hydrological response models,
each with their own attributes and shortcomings, devel-
oped by many different researchers. Furthermore, with
the current rapid developments within computer technol-
ogy and hydrology, the application of computer based
hydrologic models is only likely to increase in the near
future (Loague and VanderKwaak, 2004).

The distributed hydrological models aim to better rep-
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resent the spatio-temporal variability of hydrological
characteristics governing the rainfall-runoff response at
the catchment scale (Vieux ef al., 2004). One of the dis-
tributed hydrological models used commonly is TOP-
MODEL, which is a quasi-physically based semi-distributed
hydrological model (Beven and Kirby, 1979; Beven,
2001, Beven and Freer, 2001a).

Most physically based distributed models have param-
eters which are effective at the scale of the computa-
tional elements. In order for a rainfall-runoff model to
have practical use or be useful for hypothesis testing, it
is necessary to select appropriate values for the model
parameters. Unfortunately, it is not normally possible to
estimate the effective values of parameters by either
prior estimation or measurement, even given intensive
series of measurements of parameter values. Therefore,
parameter values must be calibrated for individual appli-
cations (Refsgaard and Knudsen, 1996; Refsgaard, 1997;
Freer, 1998; Beven, 2001).

In general, the process of parameter calibration has
involved some form of determination of a parameter set
that gives a simulation that adequately matches the
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observation. However, many calibration studies in the
past have revealed that while one optimum parameter set
could often be found, there would usually be a multitude
of quite different parameter sets that can produce almost
equally good simulation results. Recognition of multiple
acceptance of parameter sets results in the concept of
equifinality of parameter sets. Indeed, to focus attention
on a rejection of the concept of the optimal model in
favor of multiple possibilities for producing simulations
that are acceptable simulators in some sense, this idea
has been called elsewhere equifinality. The concept of
cquifinality has many applications as a new working
paradigm for parameter calibration and uncertainty esti-
mation of hydrological models (Beven, 2002; Beven and
Freer, 2001b; Freer er al., 2003).

In addition, in the general case of rainfall-runoff mod-
eling with multiple storm sequences, it might be difficult
to assess model performance using a single likelihood
measure, because the form of the distribution of uncer-
tain predictions varies markedly over the range of
streamflow and the appropriate error structure might
vary with both of type of data and the model parameter
set (Freer et al., 2003). It may often be the case that the
available data are not adequate to allow identification of
complex models and/or that a single performance mea-
sure (objective function) is not adequate to properly take

b b s
Bl itk

L\

into account the simulation of all the characteristics of a
system used. Thus, the multi-criteria or multi-objective
methods using multiple objective functions or other data
in addition to rainfall-runoff data may allow more robust
analyses of models, and aid hypothesis testing of com-
peting model structures (Gupta ef al, 1999; Beven,
2001; Madsen er al, 2002; Freer et al., 2003; Uhlen-
brook and Siebert, 2004).

In this study, the multi-criteria performance measures
based on the concept of equifinality were used for cal-
ibration of the rainfall-runoff model TOPMODEL. The
focus was particularly on the identification and demon-
stration of the equifinality of behavioral parameter sets
for different performance measures in the mechanical
modeling of complex environmental systems. Results
specific to TOPMODEL can contribute, with additional
experience, to the vigorous debate on applications of
environmental models.

Materials and Methods

1. Study site and data used

The study site herein considered is a forested experi-
mental catchment, located in the Gwangnung experimen-
tal forests within the Korea National Arboretum (see
Figure 1). This catchment is referred to the deciduous
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Figure 1. Location and Topography of the deciduous forest catchment.
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forest catchment according to the main forest fype to be
established. The area of the catchment is 22.0 ha, cov-
ered with dominantly mature natural deciduous stands
consisted of Quercus serrata and Carpinus laxiflora pre-
dominance (mean age, about 80 years). The study site is
underlain by gneiss, and characterized by a high relief
intensity, with elevation ranging from 260 to 470 m
above sea level, Mean annual precipitation is approxi-
mately 1,433 mm, generating mean annual discharges of
about 841 mm.

Hourly stream flow and rainfall data of the deciduous
forest catchment observed from April to October, 2005
were used for model calibration. The recorded rainfall
totaled 1,546.2 mm during this period, and a runoff of
1,051.4 mm was observed during the same period with
a runoff rate of 68.0%. The recorded maximum rainfall
and runoff values for 1 hour within the period were 48.9
mm/hr and 4.8 mm/hr, respectively. The potential evapo-
transpiration was calculated by the FAO Penman-Mon-
teith equation using weather information of the Dongduchun
Weather Station, and modified by the comparison with
the actual evapotranspiration data obtained within the
study site. Hourly values of the potential evapotranspira-
tion were derived by applying the observed hourly rates of
the actual evapotranspiration.

2. The hydrological model

TOPMODEL is a rainfall-runoff model in which dis-
tributed predictions of catchment response are made
based on a simple theory of hydrological similarity of
points in a catchment (Beven and Kirby, 1979; Beven et
al., 1995; Beven, 2001; Beven and Freer, 2001a). In this
version of the model, the hydrological similarity comes
from the use of the topographic index as In(o/tang),
where (3 is the area draining through a point from ups-
lope and tan & is the local slope angle (Beven, 1997).

TOPMODEL was originally developed to predict the
rainfall-runoff’ relationship, and to describe the spatial
pattern of storm flow generation in upland humid tem-
perate climate catchments. It has the advantages that the
computational burden of the model is greatly reduced
relative to a fully distributed model and the number of
parameters required to run the model can be kept small,
reducing the possibilities of overparameterization. In
most of these cases it has been found that, after calibra-

tion of the parameters, TOPMODEL provides good sim-
ulations of stream discharges (Beven, 2001).

In TOPMODEL, total runoff is generally calculated as
the sum of two major flow components: saturation
excess overland flow from variable contributing areas
and subsurface flow from the saturated zone of the soil.
And, infiltration excess overland flow component can
also be included if suggested by the catchment soil and
rainfall characteristics (Beven ez al., 1994; Franchini ef
al., 1996).

The deciduous forest catchment is located in a humid
temperate climate zone, and has a long distinct wet sea-
son and steep slopes. This wet environment and sloping
terrain can be considered as a suitable test environment
for the TOPMODEL.

The version of TOPMODEL used in this study is
based on the original assumptions of an exponential
decline of transmissivity with depth or storage deficit.
Digital Terrain Model (DTM) of the study area with grid
size of 10 m was used to calculate topographic indices
for the TOPMODEL. A detailed description of the TOP-
MODEL can be found in Beven et al. (1995) or Beven
(2001).

3. Multi-criteria performance measures

The equifinality thesis focuses attention on a search
for multiple acceptable model parameter sets that would
give reliable simulations and which should therefore be
used in making predictions with a given model. The pro-
cedure is based upon making a large number of simu-
lation runs of a model with different parameter sets,
chosen randomly from the specified ranges for each
parameter by Monte Carlo simulation (Beven and Bin-
ley, 1992). In most case, parameter sampling is carried
out using non-informative uniform sampling without
prior knowledge of individual parameter distributions
other than a feasible range of values (Beven and Freer,
2001b).

Table 1 shows the parameters to be considered in the
Monte Carlo simulation in this study, together with their
respective ranges. These ranges were thought feasible
for the study sitc on the basis of previous studics
(Beven, 1997; Beven and Freer, 2001b). Each parameter
value is drawn uniformly and independently from within
the ranges, and in total 100,000 sets were chosen to

Table 1. Parameter ranges used in the Monte Carlo Simulations.

Parameter Description Parameter Range
SZM [m] The parameter of the exponential transmissivity function 0.002 ~0.1
In7, [m*h™'] Effective lateral saturated transmissivity 233~34
T,[mh™] Unsaturated zone time delay per unit deficit 0.5~20
SRy [m] The initial storage deficit in the root zone 0~02
SR,y [m]} The soil profile storage available for transpiration 0.01 ~0.2
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drive the TOPMODEL.

The performance of each independent random param-
eter set 1s evaluated by a quantitative measure of per-
formance or likelihood measure, and each set is classified
as a behavioral or non-behavioral parameter set by a
chosen behavioral acceptance threshold or rejection cri-
teria. The likelihood value is associated with a parameter
set and it will reflect all sources of error (including
model structure, inputs and observations) and any effects
of the covariation of parametér values on model perfor-
mance implicitly (Beven and Binley, 1992; Beven and
Freer 2001a, b; Blazkova and Beven, 2004).

It is obvious that the choice of performance measures
and the behavioral acceptance threshold are important in
the multi-criteria likelihood evaluation. In this method-
ology, choosing which performance measures to use is
necessarily subjective unless the user is prepared to
make strong assumpticns about the nature of the errors
(see discussion in Beven, 2005). The uncertainty esti-
mates will depend on the definition of the performance
measures, and the boundary between behavioral and
non-behavioral parameter sets may not be clear. How-
ever, some subjectivity in the choice of the likelithood
measure would seem to be unavoidable for cases where
the model residuals do not confirm to a simple structure,
and there is evidence that the choice of the behavioral
acceptance threshold may not be as critical as previously
thought in the application (Beven and Binley, 1992;
Ratto et al., 2001; Freer et al., 2003). The performance
measures and behavioral acceptance threshold used in
this study are defined in Table 2. The different defini-
tions of performance measures shown in Table 2 were
chosen to reflect their sensitivity to different hydrologic

characteristics of the simulated period. M, is biased
towards reflecting large errors associated with peak dis-
charges, M, is biased towards recession flows, My, is
the bias for the simulation period and M, M., and
M, are compromises between M. and M, .

Results and Discussion

1. Variability in the behavioral parameter distributions

The behavioral parameter sets were identified sepa-
rately for each performance measure, by application of
their corresponding behavioral acceptance thresholds as
defined in Table 2. Figure 2 shows the dotty plots of
likelihood values for selected TOPMODEL parameters
from Monte Carlo simulations of the deciduous forest
catchment conditioned on the 2005 discharge period. In
Figure 2, each dot represents one run of the model from
a Monte Carlo experiment using 10,000 simulations with
different randomly chosen parameter values from the
ranges defined in Table 1, and horizontal lines mean
thresholds identifying behavioral parameter sets for each
performance measure; all of parameter sets give different
predictions, and dots over the line (in cases of M,,,
M, g My, and M), dots between both lines (in case of
My,,s) and dots below the line (in case of M,,,) are clas-
sified as behavioral simulations.

In Figure 2, some plots show peaky distributions of
likelihood values, indicating there are narrow, specific
ranges of parameter values having better performance,
but most plots show that for each parameter there are a
lot of good simulations across a wide range of param-
eters for each performance measure. As shown in many
of plots in Figure 2, behavioral parameter sets identified

Table 2. Definition of different performance measures and behavioral acceptance thresholds.

Performance Description Formula Threshold
measure
Merr Nash-Sutcliffe efficiency 1 ~cr§ / Gé 0.8
M, g Log transformed Nash-Sutcliffe efficiency 1- GIZO oe” (5120 20 0.8
N 2
. 22 1(Qubsty™ Qi)
M,,  Wilmot Index of Agreement —— 121 obs(® Ssim(®) 0.8
X 1(‘Qsim(t)*Qobs(t)D + ’Qobs(t)*Qobs(t)‘
N =2
. X1 (JQobstty = Lsim(ry)
Mgy Chiew and McMahon Index 1- ; Ly o [_ sim®) 5 0.8
z’t: 1(«/ Qobs(t)iﬁgobs(t))
Mjias Cumulative error Zi 1004bs(t)™ Csimes)) + 5% Discharge
Mgy  Cumulative Absolute error Zi 11Qobsy = uim) 30% Discharge

7 - 2
G, is the error variance (log transformed Ologs

7 ; . 7
), 6 is the variance of the observations (log transformed o4, ), and Q. are Qg the

simulated streamflow and the observed streamflow at timestep ¢, respectively. V is the number of time steps.
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Figure 2. Scatter plots of likelihood values for TOPMODEL parameters from Monte Carlo simulations of the deciduous

forest catchment conditioned on the 2005 discharge period using six performance measures defined in Table 2.
Each dot represents one simulation with a likelihood weight calculated by a given performance measure, and
horizontal lines mean thresholds identifying behavioral parameter sets for each performance measure; dots
over the line (in cases of M, M, ,, M, and M_,), dots between both lines(in case of M, ) and dots below the
tine (in case of M, ) are classified as behavioral simulations.

by a given threshold for each performance measure are
distributed across the whole range of each parameter
except for the parameter of the exponential transmissiv-
ity function, SZM and effective lateral saturated trans-
missivity, In7,, with relatively peaky likelihood distributions.

The numbers of behavioral parameter sets for each
performance measure are shown in Table 3, varying
depending on the performance measures, and relatively
large numbers of parameter sets are identified as behav-

ioral for performance measures, M, and M,,. Rela-
tively high acceptable rates of behavioral parameter sets
may indicate that the hydrological model and initial
ranges of parameters might be appropriately chosen.
Figure 3 shows the variations in the behavioral param-
eter distributions for each performance measure, and
Figure 4 illustrates the likelihood response surfaces
between the TOPMODEL parameters, conditioned on
the 2005 discharge period of the deciduous forest catch-
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Table 3. The number of behavioral parameter sets for each performance measure.

Performance measure

]\/IEFF MLOG MWI MCM MBIAS MSAF.
The number of behavioral parameter sets 8,724 18,744 52,003 22,595 47916 9,773
*Initial population of parameter sets to drive the TOPMODEL is 100,000,
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Figure 3. Variations and medians in the behavioral parameter distributions for each performance measure for each
TOPMODEL parameter, conditioned on the 2005 discharge period of the deciduous forest catchment.

ment. Behavioral parameter sets with higher model per-
formance are in the bright area in Figure 4.

As shown in Figure 3, the range of model behavior for
each parameter varied considerably between the different
performance measures, i.e. the median values and ranges of
the behavioral parameter distributions are highly variable
for each performance measure for some parameters. Treated
individually, the SZM constraints the model responses most,
and the In7), SR, and SR, are also the parameter that
may constraint the model responses relatively.

In addition, Figure 4 illustrates that different parts of
the parameter space are optimized for different perfor-
mance measures, i.e. sometimes a quite different optimal
parameter set or ditferent behavioral parameter sets dis-
tributions may be obtained according to the kind of per-
formance measures. Therefore, using a single performance
measure for the calibration of a hydrological model may
lead to increase model uncertainty.

2. Sensitivity analysis of behavioral parameter distri-
butions

Sensitivity analysis is a general methodology used to
evaluate the sensitivity of model output to changes in
model input, i.e. the rate of change of the response func-
tion relative to the input parameters. It is also closely
linked to Uncertainty Analysis, where concern shifts to
the evaluation of the uncertainty on the model response
as a result of uncertainties on the model input parame-
ters (parametric uncertainty) and on the model from
itself (structural uncertainty).

Figure 5 presents cumulative marginal likelihood distri-

bution plots for each parameter from behavioral parameter
sets with likelihood weights for each performance mea-
sure, conditioned on the 2005 discharge period of the
deciduous forest catchment. Those parameters showing a
strong deviation from the original uniform distribution,
which is stretched out along the imaginary diagonal line
from the left-low corner to right-up comer of each plot,
may be considered the most sensitive in that they have
been most strongly conditioned by the model evaluation
process. Those that are still uniformly distributed across
the same parameter ranges show less sensitivity (Horn-
burger and Spear, 1981). Such plots must be interpreted
with care, however. The visual impression will depend on
the original range of parameters considered, while the
value of a parameter that continues to show a uniform
marginal distribution may still have significance in the
context of a set of values of the other parameters. Expe-
rience suggests that fixing the value of such parameters
may constrain the performance of the model too much
(Beven and Freer, 2001b).

As Figure 5 shows, the parameter of the exponential
transmissivity function, SZM shows strongest sensitivity
for most performance measures except for M. Also,
effective lateral saturated transmissivity, In7), the initial
storage deficit in the root zone, SR,,,, and the soil profile
storage, SR,,,, are identified as more sensitive. Accord-
ing to the sensitivity of parameters by each performance
measure, the sensitivities based on M, M,,. and M,
are stronger than those of other measures. It may be con-
sidered that this may result from the oversensitivity to
outliers (the largest errors), which is more strongly
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Figure 4. Likelihood response surfaces between the major parameters of TOPMODEL, conditioned on the 2005
discharge period of the deciduous forest catchment. (Behavioral parameter sets with higher model
perfermance are in the white zone.)

revealed in My, M, and M;,.. In general, correlation- variables, and this high sensitivity to outliers leads to the
based measures such as the performance measures used result in that the performance measures are biased
in this study are more sensitive to outliers in the given towards the extreme events (Legates and Davis, 1997).
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Figure 5. Cumulative marginal likelihood distributions for each parameter from behavioral parameter sets with
likelihood weights for each performance measure using the 2005 discharge period of the deciduous forest
catchment. Dotty diagonal lines in plots mean original uniform distributions of likelihood weights.

M, is necessarily biased towards reflecting the larger
errors associated with high flows based on its defini-
tions, particularly in the case of model timing errors. It
thus may appear that the behavioral parameter sets iden-
tified by M., for each calibration year are strongly
reflecting hydrologic characteristics of the high flow
periods in each calibration year.

3. Relationships and compatibilities of behavioral
parameter sets between different performance mea-
sures

Analysis of the relationships between multi-criteria

performance measures can give a greater understanding
of the model dynamics and potentially help in the future
development of the model structure. The use of multi-
criteria performance measures increases our ability to
perform a test on various model structure hypotheses.
Relationships among different performance measures for
the behavioral simulations are shown in Figure 6 as dotty
plots, where each point signifies a behavioral model simu-
lation. Figure 6 shows that correlations between perfor-
mance measures of the behavioral simulations are quite
variable, often having a lot of scatter for one perfor-
mance measure, when compared with another perfor-
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Figure 6. The relationships between the likelihood weights of each compatible parameter set associated with each

performance measure.

mance measure. A comparison of the results for M,,,¢
with the other performance measures suggests that the
model as currently formulated generally over-predicts
total streamflow (negative My,;,o) while obtaining good
simulations of the larger storm events.

In addition, to examine the relationships between the
behavioral parameter sets for the different performance
measures, compatibilities of parameter sets between two
different performance measures were investigated for all
combinations of performance measures. A particular
parameter set can be identified as compatible if it fea-
tures in two or more different distributions of behavioral
parameter sets. As a result, the behavioral simulations
identified by one performance measure are not necessar-
ily behavioral for another performance measure. These
characteristics between behavioral parameter sets for dif-
ferent performance measures can be revealed in Table 4,
which summarize the compatibilities between different
performance measures. Most of the behavioral parameter
sets for My and M, exist in the behavioral parameter
sets for M, and M,,,,, and most of the behavioral param-
eter sets for M, can also function as behavioral param-
eter sets for M, Relatively high compatibilities between

Table 4. The number of compatible behavioral parameter
sets between each performance measure.

Performance measures
MLOG MWI MCM MBIAS MSAE
Mg 3734 8,724 8724 4189 7480

M, oq 14912 10464 3,001 4,364
Per;i"asmuj‘;ce My, 22,588 20,604 9,771
M, 10,801 9,763
My 4,465

Mypp My, My, and M, may imply that their behav-
ioral parameter sets come from similar areas in the
parameter space, and reflect their similarity in the defi-
nitions of the performance measures. In contrast, behav-
ioral simulation parameter sets of M;,; and M, differ
markedly from those for the other performance mea-
sures. Also, behavioral parameter sets between the M,
and M, differ quite markedly from each other with the
lowest compatibility.

Figure 6 and Table 4 support the multi-criteria cali-
bration argument. It shows that results which are seen as
acceptable by one criterion fail with other criteria com-
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puted. Moreover, when the performance measures were
combined over all performance measures, only 176 of
the parameter sets were found that are behavioral over
all measures. 176 parameter sets are only 0.18% of the
initial population of the parameter sets used in this study.
Therefore, an evaluation based on only one performance
measure is unlikely to be reliable (even when one has
put some effort into investigating one specific method).

Conclusions

In this study, the multi-criteria performance measures
based on the concept of equifinality of behavioral model
simulations were used for calibration of the rainfall-run-
off model, TOPMODEL. Totally 100,000 parameter sets
uniformly sampled by Monte Carlo Simulations from the
ranges for each TOPMODEL parameters defined in
Table 1 were applied in TOPMODEL, and hourly stream
flow and rainfall data observed from April to October,
2005 in the deciduous forest catchment located in the
Gwangnung experimental forests were used for model
calibration.

The performance of cach parameter set was evaluated
and identified with 6 different performance measures
against behavioral acceptance thresholds defined for
each performance measure, and the results were ana-
lyzed focused on the variability and relationship between
the behavioral parameter distributions according to the
definitions of performance measures.

The results demonstrate that there are many acceptable
parameter sets scattered throughout the parameter space,
all of which are consistent in some sense with the cal-
ibration data, and the range of model behavior for each
parameter varied considerably between the different per-
formance measures. Sensitivity was very high in some
parameters, and varied depending on the kind of perfor-
mance measure. Compatibilities of behavioral parameter
sets’{etween different performance measures also varied,
and a very small minority of parameter sets could pro-
duce reliable predictions regardless of the kind of per-
formance measures (at least, for the performance
measures used in this paper). Especially, the results indi-
cate that using a single performance measure for the cal-
ibration of a hydrological model may lead to an increase
in model uncertainty. Therefore, careful consideration
should be given to the choice of performance measure
appropriate to the characteristics of used model and data
and the purpose of study.

Differences in the behavioral parameter distributions
according to the performance measures may be directly
caused by the definitions of performance measures.
However, it also should be considered that the effects of
model nonlinearity, covariation of parameter values and

errors in model structure, input data or observed vari-
ables may be taken into account in the nonlinearity of
the response of acceptable model.

The performance of the parameter set can be used to
produce the likelihood-weighted marginal parameter dis-
tributions for individual parameters, and the likelihood
weighted model simulations can be used to estimate pre-
diction quantiles in a way that allows that different mod-
els may contribute to the ensemble prediction interval at
different time steps and that the distributional form of
the predictions may change from time to time step.
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