High-Yield Production of Astragalosides from Transgenic Hairy Root Cultures of Astragalus membranaceus

형질전환된 황기 모상근으로부터 Astragalosides의 생산을 위한 연구

  • Hwang, Sung-Jin (Department of Oriental Medicine Materials, Dongshin University)
  • 황성진 (동신대학교 한약재산업학과)
  • Published : 2006.04.28

Abstract

A transgenic hairy root clone AG-04 of Astragalus membranaceus was obtained following co-cultivation of leaf explants with Agrobacterium rhizogenes ATCC15834. This clone was examined for its growth and production of cyclolanostane-type saponins, astragalosides I, II, and III, under various culture conditions. Among the five basal media tested, Shenk and Hildebrandt(SH)(18) medium was best for roots growth and astragalosides production. The maximum root biomass was obtained at inoculum size of 500 mg FRW per flask, initial sucrose concentration of 3%, and shaking speeds of 90 rpm. The astagalosides production was promoted when the hairy root clone AG-04 was cultured at shaking speeds of 120 rpm and light irradiation of 18 h. Astragaloside contents was also stimulated with high initial sucrose concentration, and the maximum astargalosides contents of 6.21 %/g DRW was obtained at initial sucrose concentration of 6%. The addition of chitosan(100 mg/L) to the culture medium was significantly increased astragalosides production. This was 2.1 times higher than that obtained in a control culture without chitosan.

황기의 형질전환된 모상근으로부터 약리물질인 astragalosides I, II, 그리고 III을 효율적으로 생산하기 위하여 다양한 물리화학적 조건들 즉, 배지, 초기 당농도, 교반속도, 초기 접종농도, 광조사, 그리고 chitosan 처리에 한 elicitation 효과를 조사 하였다. 선발된 AG-04 clone의 성장과 astragalosides의 함량은 4종의 배지들 중 SH배지에서 가장 좋았으며, 배지에 첨가하는 초기 당 농도는 3%와 6%에서 각기 건물중과 astragalosides의 함량이 가장 높게 나타났다. 또한, 초기 접종량은 50 ml 배지에 500 mg(FRW)씩을 주입하는게 가장 효과적이었으며, 18시간 광조사가 되는 Shaking incubator에서 90 rpm과 120으로 교반시켰을 때 모상근의 성장과 astargalosides의 함량이 높게 나타났다. 배양 2주 후 chitosan의 처리는 모상근의 성장에는 크게 영향을 미치지 않았으나, 100 mg/L 처리구에서 대조구의 약 2.1배의 astragalosides 함량 증가를 가져왔다. 이와같은 연구결과는 황기의 대량배양을 통한 saponins 생산 연구에 효율적으로 활용될 수 있을 것으로 본다.

Keywords

References

  1. Giri, A. and M. L. Narasu (2000), Transgenic hairy roots : recent trends and applications, Biotechnology Adv. 18, 1-22 https://doi.org/10.1016/S0734-9750(99)00016-6
  2. Dornenberg, H. and D. Knorr (1995), Strategies for the improvement of secondary metabolites production in plant cell cultures, Enzyme Microbe. Technol. 17, 674-684 https://doi.org/10.1016/0141-0229(94)00108-4
  3. Taya, M., Yoyama, A., Kando, O., Kobayashi, T., and T. Matsui (1989), Growth and characteristics of plant hairy roots and their cultures in bioreactors, J. Chem. Eng. Jpn. 22, 74-89 https://doi.org/10.1252/jcej.22.89
  4. Rodriguez-Mendiola, M. A., Stafford, A., Cressuel, R., and C. Arias-Castor (1991), Biorectors for growth of plant roots, Enzyme Microb. Technol. 13, 697-702 https://doi.org/10.1016/0141-0229(91)90046-D
  5. Bais, H. P., George, J., and G. A. Ravishankar (1999), Production of esculin by hairy root cultures of C. intybus L. Indian, J. Exp. Biol. 37, 269-273
  6. Scheidegger, A. (1990), Plant biotechnology goes commercial in Japan, Trends Biotechnol. 8, 197-198 https://doi.org/10.1016/0167-7799(90)90175-W
  7. Paek, K. Y. and E. J. Han (2002), Commercial production of P. ginseng using bioreactor system, In 10th IAPTC & B Congress: Plant Biotechnology 2002 and Beyond, Eds. IAPTC & B Congress Org. USA, p-144
  8. Chang, H. and P. But (1987), Pharmacology and Applications of Chinese Materia Medica, pp.1041-1046 Singapore: World Scientific
  9. Ma, X. Q., Shi, Q., Duan, J. A., Dong, T. T., and K. W. Tsim (2002), Chemical analysis of Radix Astragali in China: a comparison with its adulterants and sesonal variations, J. Agric. Food Chem. 50, 4861-4866 https://doi.org/10.1021/jf0202279
  10. Shao, B. M., Xu, W., Dai, H., Yu, P., Li, Z., and X. M. Gao (2004), A study on the immune receptors for polysaccharides from the roots of A. membranaceus, a China medicinal herb, Biochem. Biophys. Res. Commun. 320, 1103-1111 https://doi.org/10.1016/j.bbrc.2004.06.065
  11. Yin, X., Zhang, Y., Wu, H., Zhu, X., Zheng, X., and S. Jiang (2004), Protective effects of Astragalus saponin I on early stage of diabetic nephropathy in rats, J. Pharmacol. Sci. 95, 256-266 https://doi.org/10.1254/jphs.FP0030597
  12. Vertta, L., Guerrini, M., El-Sebakhy, N. A., Asaad, A. M., Toaima, S. M., and M. E. Abou-Sheer (2001), Cycloartane saponins from A. peregrinus as modulators of lymphocyte proliferation, Fitoterapia 72, 894-905 https://doi.org/10.1016/S0367-326X(01)00339-2
  13. Zhou, Y., Hirotani, M., Rui, H., and T. Furuya (1995), Two triglycosidic triterpene astragalosides from hairy root cultures of A. membranaceus, Phytochemistry 38, 1407-1410 https://doi.org/10.1016/0031-9422(94)00833-F
  14. Hiratoni, M., Zhou, Y., Rut, H., and T. Furuya (1994), Cycloartane triterpene glycosides from the hairy root cultures of A. membranaceus, Phytochemistry 37, 1403-1407 https://doi.org/10.1016/S0031-9422(00)90420-5
  15. Hiratoni, M., Zhou, Y., Lui, H., Rut, H., and T. Furuya (1994), Astragalosides from hairy root cultures of A. membranaceus, Phytochemistry 36, 665-670 https://doi.org/10.1016/S0031-9422(00)89793-9
  16. Murashige T. and F. Skoog (1969), A revised medium for rapid growth and bioassay with tobacco tissue cultures, Physiol. Plant. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Hwang, S. J., Kim, K. S., Pyo, B. S., and B. Hwang (1999), Saponin production by hairy root cultures of P. ginseng, Biotechnol. Bioprocess Eng. 4, 309-312 https://doi.org/10.1007/BF02933759
  18. Schenk R. V. and A. C. Hildrbrandt (1972), Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J. Bot. 50, 199-204 https://doi.org/10.1139/b72-026
  19. Lloyd G. B. and B. H. McCown (1980), Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot top culture, Comb. Proc. Int. Plant Prop. Soc. 30, 421-437
  20. Gamberg O. L., R. A. Miller, and K. Ojima (1968), Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res. 50, 148-151 https://doi.org/10.1016/0014-4827(68)90403-5
  21. Ionkova, I., Kartnig, T., and W. Alfermann (1997), Cycloartane saponin production in hairy root cultures of A. mongholicus, Phytochemistry 45, 1597-1600 https://doi.org/10.1016/S0031-9422(97)00247-1
  22. Linsmaier, E. M. and F. Skoog (1965), Organic growth factor requirements of tobacco tissue cultures, Physiol. Plant. 18, 100-127 https://doi.org/10.1111/j.1399-3054.1965.tb06874.x
  23. Sakato, K. and M. Misawa (1974), Effects of chemical and physical conditions on growth of Campotheca acuminata cell cultures, Agric. Biol. Chem. 38, 491-498 https://doi.org/10.1271/bbb1961.38.491
  24. Mori, T., M. Sakurai, and S. Furusaki (1994), Effects of conditioning factor on anthocyanin production in strawberry suspension cultures, J. Sci. Food Agric. 66, 381-388 https://doi.org/10.1002/jsfa.2740660316
  25. Sakurai, M. and T. Mori (1996), Stimulation of anthocyanin synthsis by conditioned medium produced by strawberry suspension cultures, J Plant Physiol. 149, 599-604 https://doi.org/10.1016/S0176-1617(96)80340-3
  26. Do, C. B. and F. Cormier (1999) Accumulation of anthocyanins enhanced by a high osmotic potential in grape cell suspension culture, Plant Cell Rep. 9, 143-146
  27. Zhong, J. J. (2000), Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures, Adv. Biochem. Eng./Biotechnol. 71, 1-24
  28. Wang, H. Q., Yu, J. T., and J. J. Zhong (2000), Significant improvement of taxaneproduction in suspension cultures of T. chinensis by sucrose feeding strategy, Process. Biochem. 35, 479-483 https://doi.org/10.1016/S0032-9592(99)00094-1
  29. Zhong, J. J. and T. Yoshida (1995), High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: Effects of sucrose concentration and inoculum size, Enzyme Microb. Technol. 17, 1073-1079 https://doi.org/10.1016/0141-0229(95)00033-X
  30. Zhang, C. H., Wu, J. Y., and G. Y. He (2002), Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated T. yunnanensis cell cultures, App. Microbiol. Biotechnol. 60, 396-402 https://doi.org/10.1007/s00253-002-1130-5
  31. Kanokwaree, K. and P. M. Doran (1997), Effects of inoculum size on growth of A. belladonna hairy roots in shake flasks, J. Fermentation & Bioeng. 4, 378-381
  32. Bhadra, R. and J. V. Shanks (1995), Statistical design of the effect of inoculum conditions on growth of hairy root cultures of C. roceus. Biotechnol. Techniques. 9, 681-686 https://doi.org/10.1007/BF00156356
  33. Zhong, J. J., J. Seki, S. Kinoshita, and T. Yoshida (1992), Physiological characteristics of cell suspension and cell culture of Perillar frutescens, Biotechnol. Bioeng. 40, 1256-1262 https://doi.org/10.1002/bit.260401015
  34. Wu, S., Y. Zu, and M. Wu (2003), High yield production of salidroside in the suspension culture of R. sachalinensis, J. Biotechnol. 106, 33-43 https://doi.org/10.1016/j.jbiotec.2003.07.009
  35. Funk, C. and P. Brodelius (1990), Influence of growth regulators and an elicitor on phenylpropanoide metabolism in suspension cultures of V. planifolia, Phytochemistry 29, 845-848 https://doi.org/10.1016/0031-9422(90)80030-K
  36. Hwang, S. J. (2005), Charteristics of growth and catalpol production in R. glutinosa hairy roots transformed with A. rhizogenes ATCC15834, J. Plant Biol. (in press)
  37. Merkli, A., Christen, P., and I. Kapetanidis (1997), Production of diosgenin by hairy root cultures of T. foenum-graecum L. Plant Cell Rep. 16, 632-636 https://doi.org/10.1007/BF01275505
  38. Bhadra, R., Morgan, J. A., and J. V. Shanks (1998), Transient studies of light-adapted cultures of hairy roots of C. roceus : growth and indole alkaloid accumulation, Biotechnol & Bioeng. 60, 670-678 https://doi.org/10.1002/(SICI)1097-0290(19981220)60:6<670::AID-BIT4>3.0.CO;2-J
  39. Seitz, H. U. and W. Hindere (1988), Anthocyanin. In Cell culture and somatic cell genetics of plants. Vol. 5, F. Constabel and I. Vasil, Eds. Academic Press, San Diego, pp.49-76
  40. Tabata, M., Mizukami, H., Hiraoka, N., and M. Konoshima (1974), Pigment formation in callus cultures of L. erythrorhizon, Phytochemistry 13, 927-932 https://doi.org/10.1016/S0031-9422(00)91425-0
  41. Mulder-Krieger, T., Verpoorte, R., Svendse, A., and J. Scheffer (1988), Production of essential oils and flavours in plant cell and tissue cultures. A review, Plant Cell, Tissue & Org. Cult. 13, 85-114 https://doi.org/10.1007/BF00034451