Cryopreservation of CHO Cell using Serum-Free Media

무혈청 배지를 이용한 CHO 세포의 동결보존

  • Kim, Yoo-Kang (Department of Microbial Engineering, Konkuk University) ;
  • Park, Hong-Woo (Department of Chemical Engineering, Hanyang University) ;
  • Choe, Tae-Boo (Department of Microbial Engineering, Konkuk University)
  • 김유강 (건국대학교 미생물공학과) ;
  • 박홍우 (한양대학교 화학공학과) ;
  • 최태부 (건국대학교 미생물공학과)
  • Published : 2006.04.28

Abstract

During routine maintenance, animal cell lines are commonly cryopreserved in growth medium containing serum with 10% DMSO. But, in case of bioprocess under the serum-free conditions, including cultivation of cell lines and producing of pharmaceuticals, the cryopreservation should be executed without serum to prevent a cross-contamination. This experiments were performed to investigate the effects of the serum-free cryopreservation on the CHO cells. To improve the survival rates of the cryopreserved CHO cells in serum-free condition, first, the effects of permeable and non-permeable additives for substitute serum on cell viability were investigated. The combination of 10% DMSO and 0.03 M raffinose in MEM-${\alpha}$ without serum indicated 76% of cell viability. However, it did not reach the survival rates(more than 95%) of the conventional cryopreservation. In the second, to evaluate the cryopreservative ability of the serum-free medium(SFM) we compared viability of the CHO cells cryopreserved in the SFMs(Sigma C5467, C4726, and C1707, JBI SF486 and PF486), the cryoprotectant(Genenmed CAN-1000) and the MEM-${\alpha}$ with serum. All solution contained 10% DMSO. As a result of the comparison, cryopreserved cells in the SFMs showed over 95% of viability and appeared predominant viability better than cryoprotectant CAN-1000. Finally, we assessed the stability of the CHO cells in the long-term cryopreservation(LTC) using SFM. Every three months, the cryopreserved CHO cells were thawed to estimate the cell viability and the recovery rates. Then, real-time RT-PCR analyzed the inserted CHO DHFR gene. All results for the LTC appeared the same stability as the serum containing cryopreservation. In the conclusion, it could be seen that the LTC in the SFM can substitute for serum using methods in the bioprocess proceeded by CHO cells for more than 18 months.

일반적인 세포주의 동결보존은 혈청이 첨가된 배양배지에 10% DMSO를 첨가하여 실행하게 된다. 그러나 무혈청 환경에서 배양되는 세포주를 이용하여 생물의약품을 생산하는 공정에 사용되는 세포주의 경우는 교차오염 방지를 위해 동결보존 역시 혈청을 제거한 상태에서 실시되어야 한다. 본 실험은 무혈청 동결보존이 CHO 세포에 어떠한 영향을 미치는지 알아보기 위하여 실시되었다. 우선, 무혈청 동결보존에서 세포 생존율을 높이기 위해 투과성 및 비투과성 첨가제를 배지에 첨가하는 방법으로 동결보존 및 해동하여 생존율을 측정하였다. 그 결과, 10% DMSO와 0.03 M raffinose를 동시에 첨가한 경우에 76%의 생존율을 확보할 수 있었지만 기존의 혈청을 이용하는 동결보존에는 미치지 못하였다. 두 번째로 무혈청 배지의 동결보존 능력을 알아보기 위해 시판 중인 무혈청 배지와 무혈청 동결보존제를 사용하여 동결 보존 후의 생존율을 비교한 결과, 무혈청 배지를 이용한 실험에서는 혈청 배지를 이용한 동결보존과 유사한 95% 이상의 생존율을 확인할 수 있었다. 이는 무혈청 동결보존제의 동결보존 능력보다 우수한 결과이다. 마지막으로 무혈청 배지를 이용한 장기간 동결보존에서 CHO 세포의 안정성을 확인하기 위하여 무혈청 배지로 동결보존된 CHO 세포를 3개월 단위로 해동하여 생존율 및 성장 회복율을 측정하고, real-time RT-PCR을 통해 삽입된 CHO DHFR 유전자의 안정성을 평가하였다. 혈청배지와 비교할 때, 생존율과 성장 회복율, 유전자 안정성 측면에서 모두 동일한 결과를 보여, 무혈청 배지를 이용한 18개월 이상의 동결보존이 안정적임을 검증할 수 있었다. 결과적으로 생물의약품 공정에서 무혈청 배지를 이용한 동결보존이 혈청을 이용한 동결보존을 대체할 수 있을 것으로 생각된다.

Keywords

References

  1. Link, T., M. Backstrom, and T. Noll (2004), Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium, Journal of Biotechnology 110(1), 51-62 https://doi.org/10.1016/j.jbiotec.2003.12.008
  2. Nam, S. W. (1995), Antitumor activities of polysaccharudes fractuibuzed from Zoogloea sp. against meth a cells, Korean Journal of Life Science 5(2), 90-100
  3. Karlsson, J. O. M. and M. Toner (2000), Cryopreservation, In Principles of Tissue Engineering, 2nd edition, p293-307, Academic Press, San Diego
  4. Davis, J. M. (2001), Basic cell culture. 2nd edition, p176-186, Oxford University Press, New York
  5. Martin, Moe S. W., W. H. Kelsey, and M. A. Karmarck (2000), Process validation in biopharmaceutical manufacturing, Biopharmaceutical Process Validation, 287-298
  6. Mazur, P., S. P. Leibo, and E. H. Chu (1972), A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue-culture cells, Exp. Cell Res. 71(2), 345-355 https://doi.org/10.1016/0014-4827(72)90303-5
  7. Toner, M. (1993), Nucleation of ice crystals inside biological cells, In Advances in Low-Temperature Biology, Vol. 2. P. L. Steponkus, editor. p1-51, JAI Press, London
  8. Hubel, A., E. G. Cravalho, B. Nunner, and C. Korber (1992), Survival of directionally solidified B lymphoblasts under various crystal growth conditions, Cryobiology 29(2), 183-98 https://doi.org/10.1016/0011-2240(92)90019-X
  9. Ishiguro, H. and B. Rubinsky (1994), Mechanical interactions between ice crystals and red blood cells during directional solidification, Cryobiology 31(5), 483-500 https://doi.org/10.1006/cryo.1994.1059
  10. Mazur, P., W. F. Rall, and N. Rigopoulos (1981), Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes, Biophys. J. 36(3), 653-675 https://doi.org/10.1016/S0006-3495(81)84757-1
  11. Liu, Z. and R. H. Foote (1998), Osmotic effects on volume and motility of bull sperm exposed to membrane permeable and nonpermeable agents, Cryobiology 37(3), 207-218 https://doi.org/10.1006/cryo.1998.2116
  12. Rowley, S. D. (1992), Hematopoietic stem cell cryopreservation: A review of current techniques, Journal of Hematotherapy 1, 233-250 https://doi.org/10.1089/scd.1.1992.1.233
  13. Foster, P. R. (1999), Assessment of the potential of plasma fractionation processes to remove causative agents of transmissible spongiform encephalopathy, Transfus Med. 9(1), 3-14 https://doi.org/10.1046/j.1365-3148.1999.009001003.x
  14. Liu, Chi-Hsein, I-Ming Chu, and Shiaw-Min Hwang (2001), Factorial designs combined with the steepest ascent method to optimize serum-free media for CHO cells, Enzyme and Microbial Technology 28, 314-321 https://doi.org/10.1016/S0141-0229(00)00346-X
  15. Igudin, L. I., S. D. Orlov, N. V. Katsnel'son, and G. A. Markman (1983), Relationship between bovine serum composition and its capacity to stimulate cell culture growth, Tsitologiia 25(10), 1216-1218
  16. Boyd, J. W. (1989), Relationships between acid-base balance, serum composition and colostrum absorption in newborn calves, Br. Vet. J. 145(3), 249-256 https://doi.org/10.1016/0007-1935(89)90077-8
  17. Omar Lupi (2002), Prions in dermatology, Journal of the American Academy of Dermatology 46(5), 790-793 https://doi.org/10.1067/mjd.2002.120624
  18. Jochems C. E, J. B. van der Valk, F. R. Stafleu, and V. Baumans (2002), The use of fetal bovine serum: ethical or scientific problem?, Altern. Lab Anim. 30(2), 219-227
  19. Zabal, O., A. L. Kobrak, I. A. Lager, A. A. Schudel, and E. L. Weber (2000), Contamination of bovine fetal serum with bovine viral diarrhea virus, Rev. Argent Microbiol. 32(1), 27-32
  20. David, W. Jayme and Shawn R. Smith (2000), Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture, Cytotechnology 33(1-3), 27-36 https://doi.org/10.1023/A:1008133717035
  21. David, J., W. Toshio, and S. Toshiaki (1997), Basal medium development for serum-free culture: a historical perspective, Cytotechnology 23(1-3), 95-101 https://doi.org/10.1023/A:1007976006970
  22. Merten, O. W. (1999), Safety issues of animal products used in serum-free media, Dev. Biol. Stand. 99, 167-180
  23. Nakamura, T., O. Asami, K. Tanaka, and A. Ichihara (1984), Increased survival of rat hepatocytes in serum-free medium by inhibition of a trypsin-like protease associated with their plasma membranes, Exp. Cell Res. 155(1), 81-91 https://doi.org/10.1016/0014-4827(84)90769-9
  24. Regina Labitzke and Peter Friedl (2001), A serum-free medium formulation supporting growth of human umbilical cord vein endothelial cells in long-term cultivation, Cytotechnology 35(2), 87-92 https://doi.org/10.1023/A:1017551218007
  25. Shamsuddin M., B. Larsson, and H. Rodriguez-Martinez (1993), Culture of bovine IVM/IVF embryos up to blastocyst stage in semi-defined medium using insulin, transferrin and selenium or growth factors, Reproduction of Domestic Animals 28, 209-210 https://doi.org/10.1111/j.1439-0531.1993.tb00126.x
  26. Metcalfe, H., R. P. Field, and S. J. Froud (1994), The use of 2-hydroxy-2,4,6- cycloheptarin-1-one (tropolone) as a replacement for transferrin, In Animal Cell Technology: Products of Today, Prospects for Tomorrow, R. E. Spier, J. B. Griffiths, and W. Berthold, Eds., Butterworth-Heinemann, Oxford, 88-90
  27. Raghu, H. M., S. Nandi, and S. M. Reddy (2002), Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media, Veterinary Record 151, 260-265 https://doi.org/10.1136/vr.151.9.260
  28. Merten, O. W. (2002), Development of serum-free media for cell growth and production of viruses/viral vaccines: safety issues of animal products used in serum-free media, Dev. Biol. (Basel) 111, 233-257
  29. Corsini Joe, Christy Hacker and Charles Bare (2004), Serum-free cryopreservation of five mammalian cell lines in either a pelleted or suspended state, Biol. Proced. Online 6(1), 61-66 https://doi.org/10.1251/bpo73
  30. Sikorskya Jan A., Donald A. Primeranoa, Terry W. Fengera, and James Denvir (2004), Effect of DNA damage on PCR amplification efficiency with the relative threshold cycle method, Biochemical and Biophysical Research Communications 323, 823-830 https://doi.org/10.1016/j.bbrc.2004.08.168
  31. Crouse, G. F., R. N. McEwan, and M. L. Pearson (1983), Expression and amplification of engineered mouse dihydrofolate reductase minigenes, Mol. Cell. Biol. 3, 257-266 https://doi.org/10.1128/MCB.3.2.257
  32. Kelbe, R. J. and M. G. Mancuso (1983), Identification of new cryoprotective agents for cultured mammalian cells, In Vitro 19, 167-170 https://doi.org/10.1007/BF02618055
  33. Dobo. I., P. Mossuz, L. Campos, F. Girodon, A. Allegraud, V. Latger-Cannard, N. Boiret, D. Pineau, E. Wunder, M. Zandecki, V. Praloran, and S. Hermouet (2001) Comparison of four serum-free, cytokine-free media for analysis of endogenous erythroid colony growth in polycythemia vera and essential thrombocythemia, Hematol J. 2(6), 396-403 https://doi.org/10.1038/sj.thj.6200123
  34. Coller Hilary A., Carla Grandori, Pablo Tamayo, Trent Colbert, Eric S. Lander, Robert N. Eisenman, and Todd R. Golub (2000), Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion, PNAS 97(7), 3260-3265 https://doi.org/10.1073/pnas.97.7.3260
  35. Shaw, J. M. and A. O. Trounson (1989), Effect of dimethyl sulfoxide and protein concentration on the viability of two-cell mouse embryos frozen with a rapid freezing technique, Cryobiology 26(5), 413-421 https://doi.org/10.1016/0011-2240(89)90066-7
  36. Cheng, Y., Y. F. Liu, and J. Liang (2002), Protective effect of zinc: a potent heat shock protein inducer in cold preservation of rat liver, Hepatobiliary Pancreat Dis. Int. 1(2), 258-61
  37. Askari, H. A., J. H. Check, N. Peymer, and A. Bollendorf (1994), Effect of natural antioxidants tocopherol and ascorbic acids in maintenance of sperm activity during freeze-thaw process, Archives of Andrology 33, 11-15 https://doi.org/10.3109/01485019408987797
  38. Bourne, W. M., D. R. Shearer, and L. R. Nelson (1994), Human corneal endothelial tolerance to glycerol, dimethylsulfoxide, 1,2-propanediol, and 2,3-butanediol, Cryobiology 31(1), 1-9 https://doi.org/10.1006/cryo.1994.1001
  39. Dooley, D. C., P. Law, P. Schork, and H. T. Meryman (1982), Glycerolization of the human neutrophil for cryopreservation: osmotic response of the cell, Exp. Hematol 10(5), 423-434
  40. Chen, Y., R. H. Foote, and C. C. Brockett (1993), Effect of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm, Cryobiology 30(4), 423-431 https://doi.org/10.1006/cryo.1993.1042
  41. Elisabeth, E. S., E. W. Nicole, A. M. Katherine, M. L. Raymond, and J. R. Scott (2002), Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5-14 years) cryostorage, Cryobiology 44(3), 210-217 https://doi.org/10.1016/S0011-2240(02)00007-X
  42. Luscinskas, F. W., F. J. Lionetti, A. J. Melaragno, and C. R. Valeri (1983), Long- term cryopreservation of dog granulocytes, Cryobiology 20(1), 1-6 https://doi.org/10.1016/0011-2240(83)90052-4
  43. Van Langendonckt A., A. Vansteenbrugge, I. Donnay, U. Berg, E. Semple, B. Grisart, P. Mermillod, G. Brem, A. Massip, and F. Dessy (1996), Three year results of in vitro production of bovine embryos in serum-poor bovine oviduct conditioned medium, Reprod Nutr. Dev. 36(5), 493-502 https://doi.org/10.1051/rnd:19960505
  44. Depratment of Health and Human Services, Food and Drug Administration (1998), International Conference on Harmonisation; Guidance on Viral Safety Evaluation of Biotechnology Products Derived From Cell Lines of Human or Animal Origin; Availability, Federal Register 63(185)