Characteristics of Biological Hydrogen Production from Sewage Sludge treated by Optimal Solubilization Technology

최적 가용화 기술로 처리된 하수슬러지의 생물학적 수소 생산 특성

  • Published : 2006.10.30

Abstract

The purpose of this study is to search the optimal solubilization technology which could be applied to sewage sludge, and is to find the characteristics of biological hydrogen production when the sludge treated by optimal method was used as a sole substrate. As a result of the test, treatment technology mixed with alkali and ultrasonic treatment was very powerful tool for treating sewage sludge with high solubilization, and its ratio and elution rate of organic material was 0.9 and 0.076 $min^{-1}$, respectively. When the sludge treated by above optimal technology was used, 4.4 ml $H_2/g$ VSS of hydrogen was produced. Finally, When the sludge treated by above optimal technology was used, 13.4 ml $H_2/g$ VSS of hydrogen was produced under optimum pH.

본 연구에서는 폐기물로써 버려지고 있는 하수슬러지를 자원화할 수 있는 방안의 일환으로써 하수슬러지를 생물학적으로 수소를 생산하는 데 유일 기질로 사용하고자 하였다. 하수슬러지를 혐기성 소화용 기질로 사용할 때 그 자체로는 양호한 기질이 되지 못하여 다양한 가용화 기술을 적용하여 하수슬러지에 포함되어 있는 유기물을 용출시킨 후 사용하여야 한다. 이에 본 연구에서 다양한 가용화 기술을 적용하여 가용화 효과를 알아본 결과 최적 가용화 기술로 판정된 알칼리와 초음파를 혼합하여 적용하는 경우에 있어서 약 0.9의 가장 높은 가용화 효과와 0.076 $min^{-1}$의 유기물 용출속도를 얻을 수 있었다. 또한, 최적 가용화 기술을 적용한 하수슬러지만을 기질로 사용하였을 때 4.4 $H_2ml/g$ VSS의 수소를 생산할 수 있었으며, pH 조건을 최적화한 결과 약 3배 증가한 13.4 $H_2ml/g$ VSS의 수소를 생산할 수 있었다. 본 연구 결과 최적 가용화 기술로 선정된 알칼리와 초음파를 혼합 적용하는 기술은 본 연구와 같은 혐기성 소화 과정에도 이용될 수 있지만 하수슬러지의 감량화에도 적용될 수 있을 것으로 판단되어 향후 적용범위가 매우 넓은 기술이라 하겠다.

Keywords

References

  1. Ministry of Environment (2004), 2002 state of waste generation and treatment, 11-1480083-000918-01, Gwacheon, Korea, Ministry of Environment
  2. Kim, D. S. (2003), Regulation plan for ocean dumping in Korea, J. KOWREC. 11, 18-21
  3. Choi, H. B., K. Y. Hwang, and Y. S. Kim (1997), A study on factors affecting anaerobic digestion of waste activated sludge, Kor. J. Env. Hlth. Soc. 23, 28-33
  4. Heo, J. M., J. A. Park, and B. S. Son (1998), Performance enhancement of anaerobic treatment of waste sludge by chemical pretreatment, Kor. J. Sanitation 13, 16-25
  5. Li, Y. Y. and T. Noike (1992), Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Wat. Sci. Tech. 26, 857-866 https://doi.org/10.2166/wst.1992.0466
  6. Nah, I. W., Y. W. Kang, K. Y. Hwang, and W. K. Song (2000), Mechanical pretreatment of waste activated sludge for anaerobic digestion process, Wat. Res. 34, 2362-2368 https://doi.org/10.1016/S0043-1354(99)00361-9
  7. Tiehm, A., K. Nickel, M. Zellhorn, and U. Neis (2001), Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Wat. Res. 35, 2003-2009 https://doi.org/10.1016/S0043-1354(00)00468-1
  8. Ray, B. T., J. G. Lin, and R. V. Rajan (1990), Low-level alkaline solubilization for enhanced anaerobic digestion, Research J. WPCF, 62, 81-87
  9. Yoon, Y. S. (2002), Treatment of municipal sewage sludge by ozonization, Korean J. Sanitation 17, 83-88
  10. Parmar, N., A. Singh, and O. P. Ward (2001), Enzyme treatment to reduce solids and improve settling of sewage sludge, J. Ind. Microbiol. Biotechnol. 26, 383-386 https://doi.org/10.1038/sj.jim.7000150
  11. Kim, H. J., C. S. Song, D. W. Kim, and K. R. Pagilla (2001), The effect of enzyme/microbial additive on anaerobic digestion of primary sludge, Environ. Sci. Technol. 10, 35-40
  12. Cohen, A., B. Distel, A. Van Deursen, and J. G. Van Andel (1985), Role of anaerobic spore-forming bacteria in the acidogenesis of glucose-changes induced by discontinuous or low-rate feed supply, J. microbiol. 51, 179-192
  13. APHA, AWWA, WEF (1998), Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington, DC, USA
  14. Kim, J. S., C. H. Park, T. H. Kim, M. G. Lee, S. Y. Kim, S. W. Kim, and J. W. Lee (2003), Effect of various pretreatments for enhanced anaerobic digestion of waste activated sludge, J. Biosci. Bioeng. 95, 271-275 https://doi.org/10.1016/S1389-1723(03)80028-2
  15. Lin, J. G., C. N. Chang, and S. C. Chang (1997), Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization, Bioresource Technol. 62, 85-90 https://doi.org/10.1016/S0960-8524(97)00121-1
  16. Rajan, R. V., J. G. Lin, and B. T. Ray (1989), Low-level chemical pretreatment for enhanced sludge solubilization, Res. J. Water Pollut. Control Fed. 61, 1678-1683
  17. Han, S. K. and H. S. Shin (2004), Biohydrogen production by anaerobic fermentation of food waste, Int. J. Hydrogen Energy 29, 569-577 https://doi.org/10.1016/j.ijhydene.2003.09.001
  18. Chen, C. C, C. Y. Lin, and M. C. Lin (2002), Acid-base enrichment enhances anaerobic hydrogen production process, Appl. Microbiol. Biotechnol. 58, 224-228 https://doi.org/10.1007/s002530100814
  19. Payot, R., E. Guedon, C. Cailliez, E. Gelhage, and H. Petitdemange (1998), Metabolism of cellobiose by Clostridium celluolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth, Microbiology 144, 375-384 https://doi.org/10.1099/00221287-144-2-375
  20. Lay, J. J., Y. J. Lee, and T. Noike (1999), Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Wat. Res. 33, 2579-2586 https://doi.org/10.1016/S0043-1354(98)00483-7
  21. Sparling, R., D. Risbey, and H. M. Poggi-Varakdo (1997), Hydrogen production from inhibited anaerobic composters, Int. J. Hydrogen Energy 22, 563-566 https://doi.org/10.1016/S0360-3199(96)00137-1