Effect of dual pitch mini-implant design and diameter of an orthodontic mini-implant on the insertion and removal torque

교정용 미니임플랜트의 이중 피치와 직경의 차이가 삽입 및 제거 토크에 미치는 영향 평가

  • Kim, Jong-Wan (Department of Dentistry, Seoul National University Bundang Hospital) ;
  • Cho, Il-Sik (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Lee, Shin-Jae (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Tae-Woo (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Chang, Young-Il (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University)
  • 김종완 (분당서울대학교병원 치과) ;
  • 조일식 (서울대학교 치과대학 교정학교실) ;
  • 이신재 (서울대학교 치과대학 교정학교실) ;
  • 김태우 (서울대학교 치과대학 교정학교실) ;
  • 장영일 (서울대학교 치과대학 교정학교실)
  • Published : 2006.08.30

Abstract

Objective: Small orthodontic mini-implants are useful as anchorage. However they have some weaknesses such as loosening. This study was carried out to analyze the mechanical effects of the dual pitch and diameter on the insertion and removal torque of mini-implants. Methods: The threads of mini-implants were mono and dual pitch. The diameters of mini-implants were 1.4 mm and 1.6 mm. Four groups were tested (mono 1.4 mm, mono 1.6 mm, dual 1.4 mm and dual 1.6 mm). All were inserted and removed on polyurethane foam with the torques being measured. Results: The maximum torque of the dual pitch groups was higher than the mono pitch groups during removal but lower during insertion. The maximum torque of the 1.6 mm diameter groups was higher than the 1.4 mm diameter groups during insertion and removal. The dual pitch 1.4 mm group showed the lowest insertion torque but had similar or superior levels of removal torque to that of the mono pitch 1.6 mm group. Conclusions: The dual pitch especially showed a continuous high removal torque after the peak. Despite the small diameter, the dual pitch might improve the initial mechanical stability.

작은 크기의 교정용 미니임플랜트는 교정적 고정원으로 널리 이용되고 있다. 그러나 빈번히 탈락하는 단점이 있어 이를 개선하기 위해 안정성을 향상시키기 위한 다양한 연구가 시도되어 왔다. 이 연구의 목적은 이중 피치와 직경에 관련하여 미니임플랜트의 안정성에 대한 기계적 성질을 비교 분석하는 것이다. 미니임플랜트의 길이는 8 mm였으며, 피치는 단일 피치형과 이중 피치형, 직경은 1.4 mm와 1.6 mm로 단일 피치형 1.4 mm, 단일 피치형 1.6 mm, 이중 피치형 1.4 mm, 이중 피치형 1.6 mm 등 총 4군으로 구성되었다. 각 군은 20개의 미니임플랜트로 구성되었고, 균일한 밀도의 polyurethane foam에 삽입 후 제거하였다. 시간에 따른 삽입 및 제거 토크의 변화와 각각의 최대 토크 등을 측정하여 기계적 성질을 비교 분석하였다. 이중 피치형은 단일 피치형보다 유의성 있게 더 낮은 최대 삽입 토크와 더 큰 최대 제거 토크를 보여주었다. 직경 1.6 mm는 1.4 mm보다 유의성 있게 더 큰 최대 삽입 토크와 최대 제거 토크를 보여주었다. 이중 피치형 1.4 mm군은 삽입 시에는 유의성 있게 가장 낮은 최대 삽입 토크를 보여주었으며 제거 시에는 단일 피치형 1.6 mm군보다 높거나 비슷한 최대 제거 토크를 보여주었다. 특히, 이중 피치형군은 최대 제거 토크 후 지속적으로 높은 제거 토크를 보여주었다. 미니임플랜트의 기계적 안정성은 이중 피치에 의해 향상될 수 있으며, 상부의 미세 나사산은 작은 직경에서도 풀림 토크에 저항하는 기계적 안정성을 향상시킬 수 있을 것으로 보인다.

Keywords

References

  1. Albrektsson T. Direct bone anchorage of dental implants. J Prosthet Dent 1983;50:255-61 https://doi.org/10.1016/0022-3913(83)90027-6
  2. Linkow LI. The endosseous blade implant and its use in orthodontics. Int J Orthod 1969;7:149-54
  3. Block MS, Hoffman DR. A new device for absolute anchorage for orthodontics. Am J Orthod Dentofacial Orthop 1995;107:251-8 https://doi.org/10.1016/S0889-5406(95)70140-0
  4. Wehrbein H, Feifel H, Diedrich P. Palatal implant anchorage reinforcement of posterior teeth: A prospective study. Am J Orthod Dentofacial Orthop 1999;116:678-86 https://doi.org/10.1016/S0889-5406(99)70204-0
  5. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7
  6. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999;115:166-74 https://doi.org/10.1016/S0889-5406(99)70345-8
  7. Park HS. A new protocol of the sliding mechanics with Micro-implant Anchorage (MIA). Korean J Orthod 2000;30:677-85
  8. Kyung SH, Lim JK, Park YC. The use of miniscrew as an anchorage for the orthodontic tooth movement. Korean J Orthod 2001;31:415-24
  9. Kim SJ, Lee YJ, Chung KR. An effect of immediate orthodontic force on palatal endosseous appliance (C-Palatal Plate) in beagle dog. Korean J Orthod 2003;33:91-102
  10. Kim CN, Sung JH, Kyung HM. Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage. Korean J Orthod 2003;33:339-50
  11. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 1998;13: 201-9
  12. Herrmann I, Lekholm U, Holm S, Kultje C. Evaluation of patient and implant characteristics as potential prognostic factors for oral implant failures. Int J Oral Maxillofac Implants 2005;20:220-30
  13. Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004;91:20-5 https://doi.org/10.1016/j.prosdent.2003.08.008
  14. Lim JW, Kim WS, Kim IK, Son CY, Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korean J Orthod 2003;33:11-20
  15. Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2005;128:190-4 https://doi.org/10.1016/j.ajodo.2004.01.030
  16. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clini Oral Implants Res 2001;12:423-32 https://doi.org/10.1034/j.1600-0501.2001.120501.x
  17. O'Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res 2004;15:474-80 https://doi.org/10.1111/j.1600-0501.2004.01041.x
  18. Kim JW, Cho IS, Lee SJ, Kim TW, Chang YI. Mechanical analysis of the taper shape and length of orthodontic mini-implant for initial stability. Korean J Orthod 2006;36:55-62
  19. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58 https://doi.org/10.1016/S0021-9290(03)00164-7
  20. Palmer RM, Palmer PJ, Smith BJ. A 5-year prospective study of Astra single tooth implants. Clin Oral Implants Res 2000;11:179-82 https://doi.org/10.1111/j.1600-0501.2000.tb00012.x
  21. Ueda M, Matsuki M, Jacobsson M, Tjellstrom A. Relationship between insertion torque and removal torque analyzed in fresh temporal bone. Int J Oral Maxillofac Implants 1991;6:442-7
  22. Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res 2005;7(Suppl 1):13S-20S https://doi.org/10.1111/j.1708-8208.2005.tb00070.x
  23. Stephen DC, Jeanette ED. Biocompatibility and biofunctionality materials: tissue response to implanted materials. In: Michael SB, John NK. Endosseous implants for maxillofacial reconstruction. Phladelphia: WB Saunders; 1995. p. 71
  24. Zdeblick TA, Kunz DN, Cooke ME, McCabe R. Pedicle screw pullout strength. Correlation with insertional torque. Spine 1993;18:1673-6 https://doi.org/10.1097/00007632-199309000-00016
  25. Ozawa T, Takahashi K, Yamagata M et al. Insertional torque of the lumbar pedicle screw during surgery. J Orthop Sci 2005;10:133-6 https://doi.org/10.1007/s00776-004-0883-3
  26. Huiskes R, Nunamaker D. Local stresses and bone adaption around orthopedic implants. Calcif Tissue Int 1984;36 (Suppl 1): 110S-7S https://doi.org/10.1007/BF02406143