니코틴 광분해를 위한 산화티타늄 코팅 건축자재 활용

Application of $TiO_2$-Coated Construction Materials for Nicotine Photo-decomposition

  • 조완근 (경북대학교 환경공학과) ;
  • 전희동 (포항산업과학연구원 환경에너지센터)
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University) ;
  • Chun, Hee-Dong (Environment and Energy Research Center, Research Institute of Industrial Science and Technology)
  • 발행 : 2006.03.31

초록

본 연구의 목적은 환경담배연기를 대표하는 주요 오염물질 중에 하나인 니코틴의 분해를 위해서 산화티타늄 광촉매를 적용할 수 있는지 여부에 대하여 기술적 평가하는 것이다. 광촉매로 코팅된 건축자재를 이용하여 니코틴을 분해하는 정도를 평가하기 위하여 네 개의 기초 실험을 수행하였다. 니코틴의 광촉매 분해와 관련된 다음의 다섯 변수를 조사하였다: 코팅 타일의 건조조건, 코팅 졸의 종류, 코팅횟수, 상대습도, 그리고 초기농도. 변수 시험에 앞서, 실험장치에 대한 니코틴의 흡착 여부를 평가하였다. 본 연구에서 조사된 변수 모두가 니코틴의 광산화분해능에 영향을 미치는 것으로 나타났다. 낮은 온도와 긴 건조시간 조건과 비교할 때 높은 온도와 짧은 건조시간 조건에서 건조된 타일에서 보다 높은 니코틴 분해효율을 나타내었다. ST-KO3 졸로 코팅된 타일이 E-T 졸로 코팅된 타일 보다 높은 분해효율을 나타내었다. 코팅횟수가 증가할수록 광산화분해가 잘 일어났다. 높은 상대습도와 낮은 유입농도 조건에서 광산화분해가 잘 일어났다. 결과적으로, 환경담배연기에 포함된 니코틴을 광촉매로 코팅된 건축자재를 적용할 때에는 본 연구에서 평가된 다섯 가지 변수가 모두 고려되어야함이 제안되었다.

The current study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of nocotine which has well known as a representative material of environmental tobacco smoke(ETS). Four different preliminary experiments were performed for the evaluation of nicotine removal using photocatalyst-coated construction materials. The photocatalytic removal of nicotine was investigated for five parameters: dry condition of coating tiles, type of coating sol, number of coatings, relative humidity(RH), and input concentrations. Prior to performing the parameter tests, adsorption of nicotine onto the current experimental system was surveyed. All the variables tested in the present study exhibited to influence the photocatalytic decomposition of Nicotine. A dry condition of high temperature and short dry period presented higher photocatalytic oxidation(PCO) efficiency compared to that of low temperature and long dry period. ST-KO3 sol showed higher decomposition efficiency than E-T Sol. The PCO efficiency increased as the number of coating increased. High humidity and low input concentrations exhibited higher PCO efficiency. Consequently, it is noted that the five parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning nicotine in ETS.

키워드

참고문헌

  1. Repace, J. L. and Lowrey, A. H., 'Indoor air pollution, tobacco smoke, and public health,' Science, 208, 464-472(1980) https://doi.org/10.1126/science.7367873
  2. National Research Council, Environmental Tobacco Smoke: Measuring Exposure and Assessing Health Effects, National Academy Press, Washington DC, pp. 337(1986)
  3. Wald, N. J., Nanchahal, K., Thompson, S. G., and Cuc-kle, H. S., 'Does breathing other people's tobacco smoke cause lung cancer?' Brit. Med J., 293, 1217-1222 (1986) https://doi.org/10.1136/bmj.293.6556.1217
  4. U.S. Environmental Protection Agency, Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders. EPA 600/690/006B(1992)
  5. National Institute for Occupational Safety and Health, Environmental Tobacco Smoke in the Workplace. Current Intelligence Bulletin 54, NIOSH(1991)
  6. Tancrede, M., Wilson, R., Zeise, L., and Crouch, E. A. C., 'The carcinogenic risk of some organic vapors indoors: a theoretical survey,' Atmos. Environ., 21, 2187 (1987) https://doi.org/10.1016/0004-6981(87)90351-9
  7. U.S. Environmental Protection Agency, Cancer Risk from Outdoor Exposure to Air Toxics, EPA-450/l-90-004a(1990)
  8. 다게우찌 고우지, 무라사와 사다오, 이부스키 다가시, 김영도 옮김, 광촉매의 세계: 환경정화의 결정적인 수단, 대영사(1998)
  9. Yano, H. and Shoda, M., 'Selection and substantiation of an organic solvent removal apparatus at a print shop by comparative experiments using the activated carbon adsorption and catalytic oxidation methods,' J. Air & Waste Manage. Assoc., 49, 324-331(1999) https://doi.org/10.1080/10473289.1999.10463804
  10. Peral, J. and Ollis, D. F., 'Heterogeneous photocatalytic oxidation of gas-phase organics for air purification, acetone, 1-butanol, butyraldehyde, formaldehyde and m-xylene oxidation,' J. Catal., 136, 554-565(1992) https://doi.org/10.1016/0021-9517(92)90085-V
  11. Obee, T. N. and Brown, R. T., '$TiO_2$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,' Environ. Sci. Technol., 29, 1223-1231(1995) https://doi.org/10.1021/es00005a013
  12. Jacoby, W. A., Blake, D. M., Fennell, J. A., Boulter, J. E., Vargo, L. M., George, M. C., and Dolberg, S. K., 'Heterogeneous photocatalysis for control of volatile organic compounds in indoor air,' J. Air & Waste Manage. Assoc., 46, 891-898(1996) https://doi.org/10.1080/10473289.1996.10467525
  13. Obee, T. N., 'Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor,' Environ. Sci. Technol., 30, 3578-3584 (1996) https://doi.org/10.1021/es9602713
  14. Anderson, M. A., Zeltner, W. A., Fu, X., Tompkins, D. T., and Reindl, D. N., Photocatalytic degradation of formaldehyde and other VOCs in indoor air, Center for Indoor Air Research Currents, December, 1, 4(1996)
  15. Vorontsov, A. V., Savinov, E. N., Barannik, G. B., Troitsky, V. N., and Parmon, V. B., 'Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over Ti02,' Cat. Today, 39, 207-218(1997) https://doi.org/10.1016/S0920-5861(97)00102-8
  16. Fu, X., Zeltner, W. A., and Anderson, M. A., 'The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts,' Appl. Catal., B6, 209-224(1995)
  17. Blanco, J., Avila, P., Bahamonde, A., Alvarez, E., Sanchez, B., and Romero, M., 'Photocatalytic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst,' Catal Today, 29, 437-442(1996) https://doi.org/10.1016/0920-5861(95)00317-7