벤조산염을 전자공여체로 이용한 PCE의 환원성 탈염소화 특성

Characteristics of PCE Reductive Dechlorination using Benzoate as an Electron Donor

  • 이일수 (인하대학교 공과대학 환경토목공학부) ;
  • 배재호 (인하대학교 공과대학 환경토목공학부)
  • Lee, Il-Su (School of Environmental and Civil Engineering, Inha University) ;
  • Bae, Jae-Ho (School of Environmental and Civil Engineering, Inha University)
  • 발행 : 2006.03.31

초록

전자공여체로 벤조산염을 이용한 perchloroethene(PCE)의 환원성 탈염소화 과정에서 전자공여체의 첨가량 및 초기 미생물 식종량이 탈염소화에 미치는 영향을 평가하기 위하여 회분식 실험을 수행하였다. 벤조산염이 탈염소화를 위한 양론비 이하(전자공여체/수용체 비=0.5와 1)로 첨가된 경우 탈염소화 효율은 벤조산염 첨가량이 증가함에 따라 71%에서 94.3%로 증가하였으나, 탈염소화에 이용된 전자공여체의 분율은 92.7%에서 79.6%로 감소하였다. 메탄생성은 PCE와 trichloroethene(TCE)가 모두 cis-1,2-dichloroethene(cDCE)으로 전환된 후 문턱농도(threshold value, 10 nM) 이상으로 수소농도가 유지되는 동안 진행되었다. 벤조산염이 양론비 이상으로 첨가된 경우 탈염소화 완료 후 잔존하는 수소는 메탄생성량을 증가시켰다. 식종 미생물량의 증가는 지체기를 감소시켰지만 최대 탈염소화 속도는 벤조산염 분해 속도에 의해 결정되어 식종 미생물량에 큰 영향을 받지 않았다. 식종 미생물 농도가 높은 경우 초기 활발한 탈염소화로 인하여 메탄생성량은 감소하고, 탈염소화 효율은 증가하였다.

Batch experiments were performed to evaluate the effects of the electron donor dosage and the initial biomass on the reductive dechlorination of perchloroethene(PCE) with benzoate as an electron donor. When benzoate was added less than the theoretical requirement for dechlorination(electron donor/acceptor ratio=0.5 and 1), the dechlorination efficiency increased from 71% to 94.3% with the increase in benzoate dosage, but the fraction of electron equivalent utilized for dechlorination decreased from 92.7% to 79.6%. Methane production was observed when the hydrogen concentration was higher than the threshold value(10 nM) after PCE and trichloroethene (TCE) were reduced to cis-1,2-dichloroethene(cDCE). When benzoate was added more than the theoretical requirement, the residual hydrogen converted into methane after the completion of dechlorination. The increase in the seeding biomass shortened the lag time for dechlorination, but it did not affect the maximum dechlorination rate as it was mainly governed by the benzoate fermentation rate. When the seeding biomass concentration was high, active dechlorination during the early period increased dechlorination efficiency while decreasing methane production.

키워드

참고문헌

  1. Westrick, J. J., Mello, J. W., and Thomas, R. F. J., 'Groundwater supply survey,' J. Am. Water Works Assoc., 76(5), 52-59(1984)
  2. Mercer, J. W. and Cohen, R. M., 'A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation,' J. Contam. Hydrol., 6(2), 107-163(1990) https://doi.org/10.1016/0169-7722(90)90043-G
  3. Speitel, G. E. Jr. and Leonard, J. M., 'A Sequencing biofilm reactor for the treatment of chlorinated solvents using methanotrophs,' Water Environ. Res., 64(5), 712-719(1992) https://doi.org/10.2175/WER.64.5.8
  4. Bouwer, E. J., Rittmann, B. E., and McCarty, P. L., 'Anaerobic degradation of halogenated 1- and 2-carbon organic compounds,' Environ. Sci. Technol., 15(5), 596-599(1981) https://doi.org/10.1021/es00087a012
  5. Holliger, C, Schra, G., Stams, A. J. M., and Zehnder, A. J. B., 'A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth,' Appl. Environ. Microbiol., 59(9), 2991-2997(1993)
  6. Vogel, T. M. and McCarty, P. L., 'Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions,' Appl. Environ. Microbiol., 49(5), 1080-1083 (1985)
  7. Henson, J. M., Yates, M. V., Cochran, J. W., and Shac-kleford, D. L., 'Mcrobial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane,' FEMS Microbiol., Ecol., 53(1-2), 193-201(1988) https://doi.org/10.1111/j.1574-6968.1988.tb02641.x
  8. Semprini, L., Hopkins, G. D., McCarty, P. L., and Roberts, P. V., 'In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from bio-stimulation under anoxic conditions,' Environ. Sci. Technol., 26(12), 2454-2461(1992) https://doi.org/10.1021/es00036a018
  9. Chapelle, F. H., 'Indentifying redox conditins that favor the natural attenuation of chlorinated ethenes in contaminated groundwater systems,' In: Symposium on Natural Attenuation of Chlorinated Organics in Gorundwater, EPA/540/R-96/509, US EPA, Washington DC, pp 17-20(1996)
  10. Vogel, T. M., Criddle, C. S., and McCarty, P. L., 'Transformations of halogenated aliphatic compounds,' Environ. Sci. Technol, 8(21) 722-736(1987)
  11. Freedman, D. L. and Gossett, J. M., 'Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to eEthylene under methanogenic conditions,' Appl. Environ. Microbiol., 55(9), 2144-2151(1989)
  12. Gibson, S. A. and Sewell, G. W., 'Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols,' Appl. Environ. Microbiol., 58(4), 1392-1393(1992)
  13. Yang, Y. and McCarty, P. L., 'Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture,' Environ. Sci. Technol., 32(22), 3591-3597(1998) https://doi.org/10.1021/es980363n
  14. Yang, Y. and McCarty, P. L., 'Biomass, oleate, and other possible substrates for chloroethene reductive de-halogenation,' Bioremediation Journal, 4(2), 125-133 (2000) https://doi.org/10.1080/10889860091114185
  15. DiStefano, T. D., Gossett, J. M., and Zinder, S. H., 'Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture,' Appl. Environ. Microbiol., 58(11), 3622-3629(1992)
  16. Fennell, D. E., Gossett, J. M., and Zinder, S. H., 'Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene,' Environ. Sci. Technol., 31(3), 918-926(1997) https://doi.org/10.1021/es960756r
  17. Yang, Y. and McCarty, P. L., 'Biologically enhanced dissolution of tetrachloroethene DNAPL,' Envion. Sci. Technol, 34(14), 2979-2984(2000) https://doi.org/10.1021/es991410u
  18. DeWeerd, K. A., Mandelco, L., Tanner, R. S., Woese, C. R., and Suflita, J. M., 'Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium,' Arch. Mcrobiol., 154(1), 23-30(1990)
  19. Dolfing, J. and Tiedje, J. M., 'Acetate as a source of reducing equivalents in the reductive dechlorination of 2,5-dichlorobenzoate,' Arch. Microbiol., 156(5), 356-361 (1991) https://doi.org/10.1007/BF00248710
  20. Sharma, P. K. and McCarty, P. L., 'Isolation and chrac-terization of a facultatively aerobic bacterium that reduc-tively dehalogenates tetrachloroethene to cis-l,2-dichloro-ethene,' Appl. Environ. Microbiol., 62(3), 761-765(1996)
  21. Lee, I. S., Bae, J. H., Yang, Y., and McCarty, P. L., 'Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose,' J. Contam. Hydrol., 74(1-4), 313-331(2004) https://doi.org/10.1016/j.jconhyd.2004.02.003