부직포 여과막 생물반응조에서의 폐활성슬러지 감량화

Minimization of Excess Activated Sludge in Nonwoven Fabric Filter Bioreactor

  • 정경은 (인하대학교 환경토목공학부) ;
  • 배민수 (인하대학교 환경토목공학부) ;
  • 조윤경 (위스콘신대학교 토목환경공학부) ;
  • 조광명 (인하대학교 환경토목공학부)
  • Jung, Kyoung-Eun (School of Environmental & Civil Engineering, Inha University) ;
  • Bae, Min-Su (School of Environmental & Civil Engineering, Inha University) ;
  • Cho, Yun-Kyung (Department of Civil and Environmental Engineering, University of Wisconsin-Madison) ;
  • Cho, Kwang-Myeung (School of Environmental & Civil Engineering, Inha University)
  • 발행 : 2006.01.31

초록

생물학적 폐수처리과정에서 폐활성슬러지가 적게 발생하도록 하는 방법 중 현재 그 효과가 가장 확실한 것은 반응조 내의 F/M비를 낮게 유지하는 방법이다. 본 연구에서는 반응조 내의 미생물 농도를 높게 유지함으로써 F/M비를 낮게 유지할 수 있는 부직포 여과막 생물반응조에 COD농도가 약 300 mg/L이고 SS를 함유하지 않는 합성폐수를 단속적으로 주입하는 실험을 반복하여 폐활성 슬러지의 감량화 가능성을 파악하였다. 실험 결과, 반응조내의 MLSS농도가 최고 31,010 mg/L까지 증가함으로써 F/M비는 최저 0.02 g COD/g MLSS-day까지 감소하였다. 그러나 MLSS의 내생분해계수 및 산소섭취율을 측정한 결과 MLSS농도가 증가함에 따라 MLSS의 활성도는 감소하는 것으로 나타났다. 폐수주입기간 중 반응조내의 MLSS증가 및 전체 실험기간의 물질수지에 근거한 평균 미생물 성장계수 값이 각각 0.148 및 0.139 g MLSS/g COD의 낮은 값을 보임으로써 본 연구에서 채택된 부직포 여과막 생물반응조가 잉여슬러지 발생량을 감량화시키는 데 효과적임을 알 수 있었다.

Among the various methods for minimization of waste activated sludge, maintaining a low F/M ratio in the bioreactor is known to be the most effective reliable one. In this research, various experiments were performed to check the capability of the nonwoven fabric filter bioreactor, which has been proved able to maintain a low F/M ratio by maintaining a high MLSS concentration, for excess sludge minimization. The reactor was intermittently fed with a synthetic wastewater having a COD concentration of approximately 300 mg/L and no SS. Results of the experiments showed that the F/M ratio in the reactor decreased to a minimum value of 0.02 g COD/g MLSS-day as the MLSS concentration increased to a maximum value of 31,010 mg/L. However, the measured endogenous decay coefficients and oxygen uptake rates of the MLSS confirmed that the activity of the MLSS decreased as the MLSS concentration increased. Based on the increase of MLSS in the reactor and the mass balance during the whole experimental period, the average microorganism yield coefficients were computed to be low values of 0.148 and 0.139 g MLSS/g COD, respectively. These results indicate that the nonwoven fabric filter bioreactor employed in this research is effective for minimization of excess sludge production.

키워드

참고문헌

  1. Vesilind, P. A. and Spinosa, L., 'Production and regulations: Sludge into Biosolids - Processing, Disposal, Utilization,' Spinosa, L. and Vesilind, P. A.(Eds.), IWA publishing, London, pp. 3 - 18(2001)
  2. Egemen, E., Corpening, J., and Nirmalakhadan, N., 'Evaluation of an ozonation system for reduced waste sludge generation,' Water Sci. Technol., 44(2-3), 445 -562(2001)
  3. Kroiss, H., 'What is the potential for utilizing the resources in sludge,' Water. Sci. Technol., 49(10), 1-10 (2004)
  4. Canales, A. P. and Poles, J. L., 'Decreased sludge production strategy for domestic wastewater treatment,' Water Sci. Technol., 30(8), 97 - 106(1994)
  5. Kim, J. S., Lee C H., and Chang I. S., 'Effect of pump shear on the Performance of a crossflow membrane bioreactor,' Water Res., 35(9), 2137-2144(2001) https://doi.org/10.1016/S0043-1354(00)00495-4
  6. Yoon, S. H., Kang, I. J., and Lee, C. H., 'Fouling of inorganic membrane and flux enhancement in membranecoupled anaerobic bioreactor,' Sep. Sci. Technol., 34(5), 709 - 724(1999) https://doi.org/10.1080/01496399908951140
  7. Chiu, Y. C, Chang, C. N., Lin, J. G., and Huang, S. J., 'Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion,' Water Sci. Technol., 36(11), 155 - 162(1997) https://doi.org/10.1016/S0273-1223(97)00383-1
  8. Muller, J. A., 'Prospects and problems of sludge pretreatmnet processes,' Water Sci. Technol., 44(10), 121-128(2001 )
  9. Jolis, D., Jones, B., Marneri, M., Kan, H., and Jones, S., 'Thermal hydrolysis pretreatment for high solids anaerobic digestion,' Proceedings of 10th Anaerobic Digestion World Congress, Vol. II, Montreal, Canada, Aug. 29Sept. 2, pp. 1113 -1120(2004)
  10. Skiadas, I. V., Gavala, H. N., Lu, J., and Ahring, B. K., 'Thermal pre-treatment of primary and secondary sludge at 70°C prior to anaerobic digestion,' Proceedings of 10th Anaerobic Digestion World Congress, Vol. II, Montreal, Canada, Aug. 29-Sept. 2, pp. 1121-1124(2004)
  11. Sakai, Y., Fukase, T., Yasui, H., and Shibata, M., 'An activated sludge process without excess sludge production,' Water Sci. Technol., 36(11), 163 -170(1997) https://doi.org/10.1016/S0273-1223(97)00704-X
  12. Di laconi, C., Bonemazzi, F., Lopez, A., and Ramadori, R., 'Integration of chemical and biological oxidation in a SBBR for tannery wastewater treatment,' Water. Sci. Technol., 50(10), 107 - 114(2004)
  13. Rosenberger, S., Witzig, R., Manz, W., Szewzyk, U., and Kraume, M., 'Operation of different membrane bioreactors: experimental results and physiological state of the microorganims,' Water Sci. Technol., 41(10-11), 269-277(2000)
  14. Yoon, S. H., Kim, H. S., and Jung, Y. C., 'Effect of acidity consumption /production on the pH of aeration tank during the biodegradation of acetic acid/epichlorohydrin,' Water Res., 36, 2695 -2702(2002) https://doi.org/10.1016/S0043-1354(01)00501-2
  15. Yasui, H., Nakamura, K., Sakuma, S., Iwasaki, M., and Sakai, Y. A., 'Full-scale operation of a novel activated sludge process without excess sludge production,' Water Sci. Technol., 34(3-4), 395 -404(1996) https://doi.org/10.1016/0273-1223(96)00604-X
  16. Lee, N. M. and Welander, T., 'Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem,' Water Res., 30(8), 1781-1790(1996) https://doi.org/10.1016/0043-1354(96)00059-0
  17. Rensink, J. H. and Rulkens, W. H., 'Using metazoa to reduce sludge production,' Water Sci. Technol., 36(11), 171 -179(1997) https://doi.org/10.1016/S0273-1223(97)00679-3
  18. Lee, N. M. and We!ander, T., 'Use of protozoa and metazoa for decreasing sludge production in aerobic wastewater treatment,' Biotech. Lett., 18(4), 429-434(1996) https://doi.org/10.1007/BF00143465
  19. Ratsak, C. H., Kooi, B. W., and van VerseveJd, H. W., 'Biomass reduction and mineralization increase due to ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomanas fluoresens; Water Sci Technol., 29(7), 119 -128(1994)
  20. Lee, Y. and Oleszkiewicz, J. A., 'Effects of predation and ORP conditions on the performance of nitrifiers in activated sludge systems,' Water Res., 37, 4202 - 421 0 (2003) https://doi.org/10.1016/S0043-1354(03)00341-5
  21. McClintock, S. A., Pattarkine, V. M., and Randall, C. W., 'Comparison of yields and decay rates for a biological nutrient removal process and a conventional activated sludge process,' Water Sci. Technol., 26, 2195-2198(1992) https://doi.org/10.2166/wst.1992.0695
  22. Barker, P. S. and Dold, P. L., 'Sludge production and oxygen demand in nutrient removal activated sludge systems,' Water Sci. Technol., 34(5), 43-50(1996) https://doi.org/10.1016/0273-1223(96)00627-0
  23. Chen, G.-H., An, K.-J., Saby, S., Brois, E., and Djafer, M., 'Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process(OSA process),' Water Res., 37, 3855 - 3866(2003) https://doi.org/10.1016/S0043-1354(03)00331-2
  24. Saby, S., Djafer, M., and Chen, G. H., 'Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process,' Water Res., 37, 11 -20(2003) https://doi.org/10.1016/S0043-1354(02)00253-1
  25. Chen, G. H., Mo, H. K., Saby, S., Yip, W. K., and Liu, Y., 'Minimization of activated sludge production by chemically stimulated energy spilling,' Water Sci. Technol., 42(12), 189 - 200(2000) https://doi.org/10.2166/wst.2000.0269
  26. Low, E. W. and Chase, H. A., 'Reducing production of excess biomass during wastewater treatment,' Water Res., 33(5), 1119 - 1132(1999) https://doi.org/10.1016/S0043-1354(98)00325-X
  27. Mayhew, M. and Stephenson, T., 'Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency',' Water Sci. Technol., 38, 137-144(1998) https://doi.org/10.1016/S0273-1223(98)00687-8
  28. Strand, S. E., Harem G. H., and Stensel, H D., 'Activatedsludge yield reduction using chemical uncouplers,' Water Environ. Res., 71, 454-458(1999) https://doi.org/10.2175/106143097X122013
  29. Yoon, S. H., Kim, H. S., and Yeom, I. T., 'The optimum operational condition of membrane bioreactor(MBR): cost estimation of aeration and sludge treatment,' Water Res., 38, 37 -46(2004) https://doi.org/10.1016/j.watres.2003.09.001
  30. Pouet, M. F., Grasmick, A., Homer, F., Nauleau, F., and Cornier, J. C., 'Tertiary treatment of urban wastewater by cross flow microfiltration,' Water Sci. Technol., 30(4), 133 -139(1994)
  31. Trouve, E., Urbain, V., and Manem, J., 'Treatemnt of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study,' Water Sci. Technol., 30(4), 151-157(1994)
  32. Lubbecke, S., Vogelpohl, A., and Dewjanin, W., 'Wastewater treatment in a biological high-performance system with high biomass concentration,' Water Res., 29(3), 793-802(1995) https://doi.org/10.1016/0043-1354(94)00215-S
  33. Shimizu, Y., Okuno, Y., Uryu, K., Ohtsubo, S., and Watanabe, A., 'Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment,' Water Sci. Technol., 30(10), 2385 -2392(1996)
  34. Innocenti, L., Bolzonella, D., Pavan, P., and Cecchi, F., 'Effect of sludge age on the performance of a membrane bioreactor: influence on nutrient and metals removal,' Desalination, 146, 467-474(2002) https://doi.org/10.1016/S0011-9164(02)00551-9
  35. Bhatta, C. P., Matsuda, A., Kawasaki, K., and Omori, D., 'Minimization of sludge production and stable operatioal condition of a submerged membrane activated sludge process,' Water Sci. Technol., 50(9), 121-128(2004)
  36. Im, S. R., Bae, M. S., and Cho, K. M., 'Treatment of sewage with a nonwoven fabric filter bioreactor,' J of Korean Soc. on Wat. Qual., 19(1), 99-107(2003)
  37. Hwang, D. Y., Kang, B. C., and Cho, K. M., 'Effects of aeration/non-aeration time ratio on the removal of organic matter and nitrogen in sewage with intermittently aerated nonwoven fabric filter bioreactor,' J. of Korean Society Environ. Eng., 25(2), 258-265(2003)
  38. Lee, J. H. and Cho, K. M., 'Removal of organic and nitrogen in sewage using alternately intermittently aerated nonwoven fabric filter bioreactor,' J. of Korean Society Environ. Eng., 26(2), 184-190(2004)
  39. Kim, T. S., Bae, M. S., and Cho, K. M., 'Effects of hydraulic retention time and cycle time on the sewage treatment of intermittently aerated nonwoven fabric filter bioreactor,' J. of Korean Society Environ. Eng., 27(1), 17 - 24(2005)
  40. Rittmann, B. E. and McCarty, P. L., Environmental Technology : Principles and Applications, McGraw-Hill (2001)
  41. Gernaey, K., Petersen, B., Ottoy, T. P., and Vanrolleghem, P. A., 'Activated sludge monitoring with combined respirometric titrimetric measurements,' Water Res., 35, 1280-1294(2001) https://doi.org/10.1016/S0043-1354(00)00366-3
  42. Sin, G., Malisse, K., and Vanrolleghem, P. A., 'An intergrated sensor for the monitoring of aerobic and anoxic activated sludge activities in biological nitrogen removal plants,' Water Sci. Technol., 47(2), 141-148 (2003)
  43. Sedlak, R. I., Phosphorus and Nitrogen Removal from Municipal Wastewatger : Principles and Practice, 2nd ed., Lewis Publishers(1991)
  44. Hoover, S. R. and Porges, N., 'Assimilation of dairy wastes by activated sludge II : the equation of synthesis and oxygen utilization,' Sewage and Industrial Wastes, 24(1952)
  45. Metcalf & Eddy, Inc., Wastewater Engineering: Treatment and Reuse, 4th ed., McGraw-Hill(2003)