DOI QR코드

DOI QR Code

Electrostatic Ejection of Micro-droplets Containing Carbon Nanotubes

탄소나노튜브를 포함한 마이크로 액적의 정전기적 토출

  • 김용재 (성균관대학교 기계공학부) ;
  • 이석한 (성균관대학교 정보통신공학부) ;
  • 고한서 (성균관대학교 기계공학부) ;
  • 변도영 (건국대학교 항공우주공학과) ;
  • 한상준 (성균관대학교 정보통신공학부) ;
  • 양지혜 (건국대학교 항공우주공학과) ;
  • 백승현 (성균관대학교 기계공학부)
  • Published : 2006.01.01

Abstract

Carbon nanotubes have attracted much attention as future mechanical and electronic materials. However, manipulating techniques are not well developed yet. Here we propose to use electrostatic drop-on-demand devices to eject micro-droplets containing micelle-suspended single-walled carbon nanotubes. A simple electrostatic force analysis and photographic studies of droplet ejection process are presented. The analytical analysis shows that semiconducting species have higher electrostatic force density. However, enrichment of specific electronic types is not clear at large size droplets produced in this study. A micro-scale jetting device is being produced to prove the suggested behavior.

Keywords

References

  1. Lee, E., 2003, Microdrop Generation, CRC Press, Boca Raton, FL
  2. Park, J. and Oh, J., 2004, 'Fatigue Test of MEMS Device : a Monolithic Inkjet Print,' KSME International Journal, Vol. 18, pp. 798-807
  3. Choo, Y. and Kang, B., 2004, 'Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method,' KSME International Journal, Vol. 18, pp. 1236-1245
  4. Han, S., Na, M., Oh, S. and Kwak, H., 1999, 'Electrohydrodynamic(EHD) Enhancement of Boiling Heat Transfer with a Lo-Fin Tube,' KSME International Journal, Vol. 13, pp. 376-385 https://doi.org/10.1007/BF02939326
  5. Lyonnard, S., Bartlett, J., Sizgek, E., Finnie, K., Zemb, T. and Woolfrey, J., 2002, 'Role of Interparticle Potential in Controlling the Morphology of Spray-Dried Powders from Aqueous Nanoparticle Soles,' Langmuir, Vol. 18, pp. 10386-10397 https://doi.org/10.1021/la020077w
  6. Iskandar, F., Mikrajuddin, K. and Okuyama, 2001, 'In Situ Production of Spherical Silica Particles Containing Self-Organized Mesopores,' Nano Lett., Vol. 1, pp. 231-234 https://doi.org/10.1021/nl0155227
  7. Tisone, T., 1998, Dispensing Systems for Miniaturized Diagnostics, IVD Technology
  8. Schober, A., et al., 1993, 'Accurate High-Speed Liquid Handling of Very Small Biological Samples,' BioTechniques, Vol. 15, pp. 324-329
  9. Englert, D., 2000, Microarray Biochip Technology, M. Schena, Ed., Eaton Publishing, Natick, MA
  10. Hulett, H., et al., 1969, 'Cell Sorting - Automated Separation of Mammalian Cells as a Function of Intracellular Fluorescence,' Science, Vol. 166, pp. 747-749 https://doi.org/10.1126/science.166.3906.747
  11. Itawa, M., Adachi, K., Furukawa, S. and Amakawa, T., 2004, 'Synthesis of Purified AIN Nano Powder by Transferred Type Arc Plasma,' J. Phys. D: Appl. Phys., Vol. 37, pp. 1041-1047 https://doi.org/10.1088/0022-3727/37/7/014
  12. Bharathan, J. and Yang, Y., 1988, 'Polymer Electroluminescent Devices Processed by Inkjet Printing: Polymer Light-Emitting Logo,' Appl. Phys. Lett., Vol. 72, pp. 2660-2662 https://doi.org/10.1063/1.121090
  13. Chang, S., et al., 1988, 'Dual-Color Polymer Light-Emitting Pixels Processed by Hybrid Inkjet Printing,' Appl. Phys. Lett., Vol. 73, pp. 2561-2563 https://doi.org/10.1063/1.122533
  14. Dresselhaus, M., Dresselhaus, G. and Eklund, P., 1996, Science of Fullerenes and Carbon Nanotubes, Academic, New York
  15. Zhu, W., Bower, C., Zhou, O., Kochanski, G. and Jin, S., 1999, 'Large Current Density from Carbon Nanotubes Field Emitters,' Appl. Phys. Lett., Vol. 75, pp. 873-875 https://doi.org/10.1063/1.124541
  16. Yue, G., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J. and Zhou, O., 2002, 'Generation of Continuous and Pulsed Diagnostic Imaging X-Ray Radiation Using a Carbon-Nanotube-based Field-emission Cathode,' Appl. Phys. Lett., Vol. 81, pp. 355-357 https://doi.org/10.1063/1.1492305
  17. Shiffler, D., Zhou, O., Bower, C., LaCour, M. and Golby, K., 2004, 'A High-Current, Large-Area, Carbon Nanotube Cathode,' IEEE Transactions on Plasma Science, Vol. 32, pp. 2152-2154 https://doi.org/10.1109/TPS.2004.835519
  18. Bower, C., Zhou, O., Zhu, W., Ramirez, A., Kochanski, G. and Jin, S., 2000, 'Fabrication and Field Emission Properties of Carbon Nanotube Cathodes,' Mat. Res. Soc. Symp. Proc., Vol. 593, pp. 215-220
  19. Krupke, R., Hennrich, F., Lohneysen, H. and Kappes, M., 2003, 'Saparation of Metallic from Semiconducting Single-Walled Carbon Nanotubes,' Science, Vol. 301, pp. 344-347 https://doi.org/10.1126/science.1086534
  20. David J. Griffiths, 1989, Introduction to electrodynamics 2nd edition, Prentice Hall, Inc.
  21. Benedict, L., Louie, S. and Nakayama, Y., 1995, 'Static Polarizabilities of Single-Wall Carbon Nanotubes,' Phys. Rev. B, Vol. 52, pp. 8541-8549 https://doi.org/10.1103/PhysRevB.52.8541
  22. Pichler, T., et al., 1998, 'Localized and Delocalized Electronic States in Single-Wall Carbon Nanotubes,' Phys. Rev. Lett., Vol. 80, pp. 4729-4732 https://doi.org/10.1103/PhysRevLett.80.4729
  23. O'Connell, M., Bachilo, S., Huffman, C., Moore, V., Strano, M., Haroz, E., Rialon, K., Boul, B., Noon, W., Kitrell, C., Ma, J., Hauge, R., Weisman, R. and Smalley, R., 2002, 'Band Gap Fluorescence from Individual Sing-Walled Carbon Nanotubes,' Science, Vol. 297, pp. 593-596 https://doi.org/10.1126/science.1072631