DOI QR코드

DOI QR Code

The Effect of Protein Expression of Streptococcus pneumoniae by Blood

  • Bae, Song-Mee (Division of Bacterial Respiratory Infections, Center for Infectious Disease, National Institute of Health, Korea Center for Diseases control and Prevention) ;
  • Yeon, Sun-Mi (Lab. of Pathogenic Proteomics, Center for Immunology & Pathology, National Institute of Health, Korea Center for Diseases control and Prevention) ;
  • Kim, Tong-Soo (Lab. of Pathogenic Proteomics, Center for Immunology & Pathology, National Institute of Health, Korea Center for Diseases control and Prevention) ;
  • Lee, Kwang-Jun (Division of Bacterial Respiratory Infections, Center for Infectious Disease, National Institute of Health, Korea Center for Diseases control and Prevention)
  • Received : 2006.01.05
  • Accepted : 2006.07.20
  • Published : 2006.11.30

Abstract

During infection, the common respiratory tract pathogen Streptococcus pneumoniae encounters several environmental conditions, such as upper respiratory tract, lung tissue, and blood stream, etc. In this study, we examined the effects of blood on S. pneumoniae protein expression using a combination of highly sensitive 2-dimensional electrophoresis (DE) and MALDI-TOF MS and/or LC/ESI-MS/MS. A comparison of expression profiles between the growth in THY medium and THY supplemented with blood allowed us to identify 7 spots, which increased or decreased two times or more compared with the control group: tyrosyl-tRNA synthetase, lactate oxidase, glutamyl-aminopeptidase, L-lactate dehydrogenase, cysteine synthase, ribose-phosphate pyrophosphokinase, and orotate phosphoribosyltransferase. This global approach can provide a better understanding of S. pneumoniae adaptation to its human host and a clue for its pathogenicity.

Keywords

References

  1. Charpentier, E., Novak, R. and Tuomanen, E. (2000) Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by ClpC. Mol. Microbial. 37, 717-726 https://doi.org/10.1046/j.1365-2958.2000.02011.x
  2. Dinieal, M. M., Robert, F. B. and Alexander, T. (2000) Streptococcus pneumoniae: at the threshold of the 21st centry; Molecular Biology and Mechanism of Disease. Tomasz, A. (ed.), pp. 485-491, Mary Ann liebert, Inc., New York, USA
  3. Dowds, B. C. A. and Hoch, J. A. (1991) Regulation of the oxidative stress response by the hpr gene in Bacillus subtilis. J. Gen. Microbiol. 137, 1121-1125 https://doi.org/10.1099/00221287-137-5-1121
  4. Herbert, B. R., Molly, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G. and Williams, K. L. (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845-851 https://doi.org/10.1002/elps.1150190540
  5. Heukeshoven, J. and Dernick, R. (1985) Increased sensitivity for coomassie staining of sodium dodecyl sulfate-polyacrylamide gels using phast system development unit. Electrophoresis 9, 60-61 https://doi.org/10.1002/elps.1150090112
  6. Hirst, R. A., Sikand, K. S., Rutman, A., Mitchell, T. J., Andrew, P. W. and O'Callaghan, C. (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect. Immun. 68, 1557-1562 https://doi.org/10.1128/IAI.68.3.1557-1562.2000
  7. Hoskins, J., Alborn, W. E., Arnold, J., Blaszczac, L.C., Burgett, S., DeHoff, B. S., Estrem, S. T, Fritz, L., Fu, D. J., Fuller, W., Geringer, C., Gilmour, R., Glass, J. S., Khoja, H., Kraft, A. R., Lagace, R. E., LeBlanc, D. J., Lee, L. N., Lefkowitz, E. J., Lu, J., Matsushima, P., McAhren, S. M., McHenney, M., McLeaster, K., Mundy, C. W., Nicas, T. I., Norris, F. H., O'Gara, M., Peery, R. B., Robertson, G. T., Rockey, P., Sun, P. M., Winkler, M. E., Yang, Y., Young-Bellido, M., Zhao, G., Zook, C. A., Baltz, R. H., Jaskunas, S. R., Rosteck, P. R., Skatrud, P. L. and Glass, J. I. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709-5717 https://doi.org/10.1128/JB.183.19.5709-5717.2001
  8. Leichert, L. I., Scharf, C. and Hecker M. (2003) Global characterization of disulfide stress in Bacillus subtilis. J. Bacteriol. 185, 1967-1975 https://doi.org/10.1128/JB.185.6.1967-1975.2003
  9. Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255-262 https://doi.org/10.1002/elps.1150090603
  10. Newton, G. L., Arnold, K., Price, M. S., Sherrill, C., Delcardayre, S. B, Aharonowitz, Y., Cohen, G.., Davies, J., Fahey, R. C. and Davis, C. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J. Bacteriol. 178, 1990-1995 https://doi.org/10.1128/jb.178.7.1990-1995.1996
  11. Novak, R., Charpentier, E., Braun, J. S., Park, E., Murti, S., Tuomanen, E. and Masure, R. (2000) Extracellular targeting of choline-binding proteins in Streptococcus pneumoniae by a zinc metalloprotease. Mol. Microbiol. 36, 366-376 https://doi.org/10.1046/j.1365-2958.2000.01854.x
  12. Novak, R. and Tuomanen, E. (1999) Pathogenesis of pneumococcal pneumonia. Semin. Respir. Infect. 14, 209-217
  13. Pericone, C. D., overweg, K., Hermans, W. M. and Weiser, J. N. (2000) Inhibitory and bactericidal effect of Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 68, 3990-3997 https://doi.org/10.1128/IAI.68.7.3990-3997.2000
  14. Rabilloud, T. (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17, 813-829 https://doi.org/10.1002/elps.1150170503
  15. Schuchat, A., Robinson, K., Wenger, J. D., Harrison, L. H., Farley, M., Reingold, A. L., Lefkowitz, L. and Perkins, B. A. (1997) Bacterial meningitis in the United States in 1995. N. Engl. J. med. 337, 970-976 https://doi.org/10.1056/NEJM199710023371404
  16. Seki, M., Iida, K. I., Saito, M., Nakayama, H. and Yoshida, S. I. (2004) Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J. Bacteriol. 186, 2046-2051 https://doi.org/10.1128/JB.186.7.2046-2051.2004
  17. Seong, J. K., Kim, D. K., Choi, K. H., Oh, S. H., Kim, K. S., Lee, S. S. and Um, H. D. (2002) Proteomic analysis of the cellular proteins induced by adaptive concentrations of hydrogen peroxide in human U937 cells. Exp. Mol. Med. 34, 374-378 https://doi.org/10.1038/emm.2002.53
  18. Tettelin, H., Nelson, K. Fl., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., Heidelberg, J., DeBoy, R. T., Haft, D. H., Dodson, R. J., Durkin, A. S., Gwinn, M., Kolonay, J. F., Nelson, W. C., Peterson, J. D., Umayam, L. A., White, O., Salzberg, S. L., Lewis, M. R., Radune, D., Holtzapple, E., Khouri, H., Wolf, A. M., Utterback, T. R., Hansen, C. L., McDonald, L. A., Feldblyum, T. V., Angiuoli, S., Dickinson, T., Hickey, E. K., Holt, I. E., Loftus, B. J., Yang, F., Smith, H. O., Venter, J. C., Dougherty, B. A., Morrison, D. A., Hollingshead, S. K. and Fraser, C. M. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506 https://doi.org/10.1126/science.1061217
  19. Tuomanen, E. (1999) Molecular and biology of pneumococcal infection. Curr. Opin. Microbial. 2, 35-39 https://doi.org/10.1016/S1369-5274(99)80006-X
  20. Vandahl, B. B. S., Birkelund, S. and Christiansen, G. (2004) Genome and proteome analysis of Chlamydia. Proteomics 4, 2831-2842 https://doi.org/10.1002/pmic.200400940
  21. Weiser, J. N., Bae, D., Epino, H., Gordon, S. B., Kapoor, M., Zenewicz, L. A. and Shchepetov, M. (2001) Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69, 5430-5439 https://doi.org/10.1128/IAI.69.9.5430-5439.2001
  22. Zhao, B., Yeo, C. C., Lee, C. C., Geng, A., Chew, F. T. and Poh, C. L. (2004) Proteome analysis of gentisate-induced response in Pseudomonas alcaligenes NCIB9867. Proteomics 4, 2028-2036 https://doi.org/10.1002/pmic.200300730

Cited by

  1. Global transcription profiling and virulence potential of Streptococcus pneumoniae after serial passage vol.443, pp.1-2, 2009, https://doi.org/10.1016/j.gene.2009.04.014
  2. Proteomic Analysis of Membrane Proteins fromStreptococcus pneumoniaewith Multiple Separation Methods Plus High Accuracy Mass Spectrometry vol.15, pp.10, 2011, https://doi.org/10.1089/omi.2010.0133
  3. Streptococcus pneumoniaeproteomics: determinants of pathogenesis and vaccine development vol.12, pp.6, 2015, https://doi.org/10.1586/14789450.2015.1108844
  4. Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents vol.8, pp.4, 2008, https://doi.org/10.1002/pmic.200700664
  5. Virulence factors in pneumococcal respiratory pathogenesis vol.3, pp.2, 2008, https://doi.org/10.2217/17460913.3.2.205
  6. Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease vol.391, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2009.11.075
  7. Lactate Dehydrogenase Is the Key Enzyme for Pneumococcal Pyruvate Metabolism and Pneumococcal Survival in Blood vol.82, pp.12, 2014, https://doi.org/10.1128/IAI.02005-14