DOI QR코드

DOI QR Code

Overexpressed Derlin-1 Inhibits ER Expansion in the Endothelial Cells Derived from Human Hepatic Cavernous Hemangioma

  • Hu, Dong (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Ran, Yu-Liang (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Zhong, Xing (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Hu, Hai (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Yu, Long (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Lou, Jin-Ning (Institute of Clinical Medical Sciences, China-Japan Friendship Hospital) ;
  • Sun, Li-Xing (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Yang, Zhi-Hua (Department of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College)
  • Received : 2005.12.02
  • Accepted : 2006.06.28
  • Published : 2006.11.30

Abstract

Proteins that are unfolded or misfolded in the endoplasmic reticulum (ER) must be targeted for refolding or degradation to maintain the homeostasis of the ER. Derlin-1 was reportedly implicated in the retro-translocation of misfolded proteins from the ER to the cytosol for degradation. In this report, we showed that Derlin-1 was down-regulated in the endothelial cells derived from human hepatic cavernous hemangioma (CHEC) compared with other tested cells. Electron microscopy analysis showed that ER was aberrantly enlarged in CHEC cells, but not in other tested cells. When overexpressed, Derlin-1 induced the dilated ER to return normal size. This ER dynamic was associated with the activation of unfolded protein response (UPR). In CHEC cells where Derlin-1 was down-regulated, increased expression of the immunoglobulin heavy chain-binding protein (Bip) and UPR-specific splicing of X-box DNA-binding protein 1 (XBP1) mRNA were detected, as compared with that in other tested cells, indicating that UPR was activated. After Derlin-1 overexpression, the extent of UPR activation diminished, as evidenced by decreased expression of Bip, reduced amount of the spliced form of XBP1 ($XBP1_S$), and elevated expression of the unspliced form of XBP1 ($XBP1_U$). Taken together, these findings provide another example of a single protein being able to affect ER dynamic in mammalian cells, and an insight into the possible molecular mechanism(s).

Keywords

References

  1. Couteulx, S. L., Brezin A. P., Fontaine, B., Tournier-Lasserve, E. and Labauge, P. (2002) A novel KRIT1/CCM1 truncating mutation in a patient with cerebral and retinal cavernous angiomas. Arch. Ophthalmol. 120, 217-218
  2. Dalby, B., Cates, S., Harris, A., Ohki, E. C., Tilkins, M. L., Price, P. J. and Ciccarone, V. C. (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33, 95-103 https://doi.org/10.1016/j.ymeth.2003.11.023
  3. Federovitch, C. M., Ron, D. and Hampton, R. Y. (2005) The dynamic ER: experimental approaches and current questions. Curr. Opin. Cell Biol. 17, 409-414 https://doi.org/10.1016/j.ceb.2005.06.010
  4. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A. and Nagata, K. (2001) A novel ER alphamannosidase- like protein accelerates ER-associated degradation. EMBO Rep. 2, 415-422 https://doi.org/10.1093/embo-reports/kve084
  5. Hough, R. F., Lingam, A. T. and Bass, B. L. (1999) Caenorhabditis elegans mRNAs that encode a protein similar to ADARs derive from an operon containing six genes. Nucleic Acids Res. 27, 3424-3432 https://doi.org/10.1093/nar/27.17.3424
  6. Ito, D., Walker, J. R., Thompson, C. S., Moroz, I., Lin, W., Veselits, M. L., Hakim, A. M., Fienberg, A. A. and Thinakaran, G. (2004) Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol. Cell Biol. 24, 9456-9469 https://doi.org/10.1128/MCB.24.21.9456-9469.2004
  7. Jaffe, E. A., Nachman, R. L., Becker, C. G. and Minick, C. R. (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745-2756 https://doi.org/10.1172/JCI107470
  8. Kalies, K. U., Allan, S., Sergeyenko, T., Kroger, H. and Romisch, K. (2005) The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J. 24, 2284- 2293 https://doi.org/10.1038/sj.emboj.7600731
  9. Katiyar, S., Joshi, S. and Lennarz, W. J. (2005) The retrotranslocation protein derlin-1 binds peptide:N-glycanase to the endoplasmic reticulum. Mol. Biol. Cell 16, 4584-4594 https://doi.org/10.1091/mbc.E05-04-0345
  10. Kirst, M. E., Meyer, D. J., Gibbon, B. C., Jung, R. and Boston, R. S. (2005) Identification and characterization of endoplasmic reticulum-associated degradation proteins differentially affected by endoplasmic reticulum stress. Plant Physiol. 138, 218-231 https://doi.org/10.1104/pp.105.060087
  11. Knop, M., Finger, A., Braun, T., Hellmuth, K. and Wolf, D. H. (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15, 753-763
  12. Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381 https://doi.org/10.1016/j.ymeth.2004.10.010
  13. Lilley, B. N. and Ploegh H. L. (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834-840 https://doi.org/10.1038/nature02592
  14. Lilley, B. N. and Ploegh, H. L. (2005) Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14296-14301 https://doi.org/10.1073/pnas.0505014102
  15. Lou, J., Buhler, L., Deng, S., Mentha, G., Montesano, R., Grau, G. E. and Morel, P. (1998) Inhibition of leukocyte adherence and transendothelial migration in cultured human liver vascular endothelial cells by prostaglandin E1. Hepatology 27, 822-828 https://doi.org/10.1002/hep.510270326
  16. Lou, J., Triponez, F., Oberholzer, J., Wang, H., Yu, D., Buhler, L., Cretin, N., Mentha, G., Wollheim, C. B. and Morel, P. (1999) Expression of alpha-1 proteinase inhibitor in human islet microvascular endothelial cells. Diabetes 48, 1773-1778 https://doi.org/10.2337/diabetes.48.9.1773
  17. Ma, Y. and Hendershot, L. M. (2004) Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. J. Biol. Chem. 279, 13792- 13799 https://doi.org/10.1074/jbc.M313724200
  18. Ma, Y. and Hendershot, L. M. (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat. Rev. Cancer 4, 966-977 https://doi.org/10.1038/nrc1505
  19. Mori, K. (2003) Frame switch splicing and regulated intramembrane proteolysis: key words to understand the unfolded protein response. Traffic 4, 519-28 https://doi.org/10.1034/j.1600-0854.2003.00112.x
  20. Oda, Y., Okada, T., Yoshida, H., Kaufman, R. J., Nagata, K. and Mori, K. (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ERassociated degradation. J. Cell Biol. 172, 383-193 https://doi.org/10.1083/jcb.200507057
  21. Plummer, N. W., Zawistowski, J. S. and Marchuk, D. A. (2005) Genetics of cerebral cavernous malformations. Curr. Neurol. Neurosci. Rep. 5, 391-396 https://doi.org/10.1007/s11910-005-0063-7
  22. Salmon, P., Oberholzer, J., Occhiodoro, T., Morel, P., Lou, J. and Trono, D. (2000) Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol. Ther. 2, 404-414 https://doi.org/10.1006/mthe.2000.0141
  23. Schroder, M. and Kaufman, R. J. (2005) The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739-789 https://doi.org/10.1146/annurev.biochem.73.011303.074134
  24. Shaffer, A. L., Shapiro-Shelef, M., Iwakoshi, N. N., Lee, A. H., Qian, S. B., Zhao, H., Yu, X., Yang, L., Tan, B. K., Rosenwald, A., Hurt, E. M., Petroulakis, E., Sonenberg, N., Yewdell, J. W., Calame, K., Glimcher, L. H. and Staudt, L. M. (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81-93 https://doi.org/10.1016/j.immuni.2004.06.010
  25. Shang, J. and Lehrman, M. A. (2004) Discordance of UPR signaling by ATF6 and Ire1p-XBP1 with levels of target transcripts. Biochem. Biophys. Res. Commun. 317, 390-396 https://doi.org/10.1016/j.bbrc.2004.03.058
  26. Shen, X., Zhang, K. and Kaufman, R. J. (2004) The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J. Chem. Neuroanat. 28, 79-92 https://doi.org/10.1016/j.jchemneu.2004.02.006
  27. Sriburi, R., Jackowski, S., Mori, K. and Brewer, J. W. (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 167, 35-41 https://doi.org/10.1083/jcb.200406136
  28. Taxis, C., Vogel, F. and Wolf, D. H. (2002) ER-golgi traffic is a prerequisite for efficient ER degradation. Mol. Biol. Cell 13, 1806-1818 https://doi.org/10.1091/mbc.01-08-0399
  29. Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S. and Walter, P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249- 258 https://doi.org/10.1016/S0092-8674(00)80835-1
  30. Tsai, B., Ye, Y. and Rapoport, T. A. (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 3, 246-255 https://doi.org/10.1038/nrm780
  31. Xu, C., Bailly-Maitre, B. and Reed, J. C. (2005) Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656-2664 https://doi.org/10.1172/JCI26373
  32. Xue, X., Piao, J. H., Nakajima, A., Sakon-Komazawa, S., Kojima, Y., Mori, K., Yagita, H., Okumura, K., Harding, H. and Nakano, H. (2005) Tumor Necrosis Factor $\alpha$ (TNF $\alpha$) Induces the Unfolded Protein Response (UPR) in a Reactive Oxygen Species (ROS)-dependent Fashion, and the UPR Counteracts ROS Accumulation by TNF $\alpha$. J. Biol. Chem. 280, 33917- 33925 https://doi.org/10.1074/jbc.M505818200
  33. Yamamoto, K., Yoshida, H., Kokame, K., Kaufman, R. J. and Mori, K. (2004) Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cisacting elements ERSE, UPRE and ERSE-II. J. Biochem. (Tokyo) 136, 343-350 https://doi.org/10.1093/jb/mvh122
  34. Ye, Y., Shibata, Y., Kikkert, M., van Voorden, S., Wiertz, E. and Rapoport, T. A. (2005) Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14132-14138 https://doi.org/10.1073/pnas.0505006102
  35. Ye, Y., Shibata, Y., Yun, C., Ron, D. and Rapoport, T. A. (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841-847 https://doi.org/10.1038/nature02656
  36. Zawistowski, J. S., Stalheim, L., Uhlik, M. T., Abell, A. N., Ancrile, B. B., Johnson, G. L. and Marchuk, D. A. (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum. Mol. Genet. 14, 2521-2531 https://doi.org/10.1093/hmg/ddi256
  37. Zhong, X., Ran, Y. L., Lou, J. N., Hu, D., Yu, L., Zhang, Y. S., Zhou, Z. and Yang, Z. H. (2004) Construction of human liver cancer vascular endothelium cDNA expression library and screening of the endothelium-associated antigen genes. World J. Gastroenterol. 10, 1402-1408 https://doi.org/10.3748/wjg.v10.i10.1402

Cited by

  1. A Case of a Ruptured Sclerosing Liver Hemangioma vol.2011, 2011, https://doi.org/10.4061/2011/942360
  2. hF-LANa, a human homologue of Derlin family, regulating the expression of cancer-related genes promotes NIH3T3 cell transformation vol.258, pp.2, 2007, https://doi.org/10.1016/j.canlet.2007.08.017
  3. BAP31 Interacts with Sec61 Translocons and Promotes Retrotranslocation of CFTRΔF508 via the Derlin-1 Complex vol.133, pp.6, 2008, https://doi.org/10.1016/j.cell.2008.04.042
  4. Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes vol.87, pp.13-14, 2010, https://doi.org/10.1016/j.lfs.2010.08.007
  5. Derlin-1 is overexpressed in human colon cancer and promotes cancer cell proliferation vol.408, pp.1-2, 2015, https://doi.org/10.1007/s11010-015-2496-x
  6. The impact of the endoplasmic reticulum protein-folding environment on cancer development vol.14, pp.9, 2014, https://doi.org/10.1038/nrc3800
  7. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization vol.228, pp.3, 2008, https://doi.org/10.1016/j.taap.2007.12.031