DOI QR코드

DOI QR Code

Effective Chemopreventive Activity of Genistein against Human Breast Cancer Cells

  • Shon, Yun-Hee (Intractable Disease Research Center, Dongguk University) ;
  • Park, Sun-Dong (Department of Herbal Pharmacology, College of Oriental Medicine and Cardiovascular Medical Research Center, Dongguk University) ;
  • Nam, Kyung-Soo (Department of Pharmacology, College of Medicine, Dongguk University)
  • Received : 2006.03.07
  • Accepted : 2006.05.02
  • Published : 2006.07.31

Abstract

Chemopreventive and cytotoxic effect of genistein against human breast cancer cell lines was investigated. Genistein inhibited cell proliferation in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) human breast carcinoma cell lines. Cytochrome P450 (CYP) 1A1-mediated ethoxyresorufin O-deethylase (EROD) activity was inhibited by genistein in a concentrationdependent manner. Genistein significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cyclooxy-genase-2 activity and protein expression at the concentrations of 10 (p < 0.05), 25 (p < 0.05) and 50 mM (p < 0.01). In addition, ornithine decarboxylase (ODC) activity was reduced to 53.8 % of the control after 6 h treatment with 50 mM genistein in MCF-7 breast cancer cells. These results suggest that genistein could be of therapeutic value in preventing human breast cancer.

Keywords

References

  1. Begg, L., Kuller, L. H., Gutai, J. P., Caggiula, A. G., Wolmask, N. and Watson, C. G. (1987) Endogenous sex hormone levels and breast cancer risk. Genetic Epidemiol. 4, 233-247 https://doi.org/10.1002/gepi.1370040402
  2. Canizares, F., Salinas, J., de las Heras, M., Diaz, J., Tovar, I., Martinez, P. and Penafiel, R. (1999) Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinicopathologic parameters. Clin. Cancer Res. 5, 2035-2041
  3. Cavalieri, E. L., Stack, D. E., Devanesan, P. D., Todorovic, R., Dwivedy, I., Higginbotham, S., Johansson, S. L., Patil, K. D., Gross, M. L., Gooden, J. K., Ramanathan, R., Cerny, R. L. and Rogan, E. G. (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc. Natl. Acad. Sci. USA 94, 10937-10942 https://doi.org/10.1073/pnas.94.20.10937
  4. Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreutz, H., Wahala, K., Montesano, R. and Schweigerer, L. (1997) Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 57, 2916-2921
  5. Huang, Z., Fasco, M. J., Figge, H. L., Keyomarsi, K. and Kaminsky, L. S. (1996) Expression of cytochromes P450 in human breast tissue and tumors. Drug Metab. Dispos. 24, 899-905
  6. Kim, S. U., Lee, K. M., Park, S. K., Yoo, K. Y., Noh, D. Y., Choe, K. J., Ahn, S. H., Hirvonen, A. and Kang, D. H. (2004) Genetic polymorphism of glutathione S-transferase P1 and breast cancer risk. J. Biochem. Mol. Biol. 37, 582-585 https://doi.org/10.5483/BMBRep.2004.37.5.582
  7. Kudo, I. and Murakami, M. (2005) Prostaglandin E synthase, a terminal enzyme for prostaglandin E$_{2}$ biosynthesis. J. Biochem. Mol. Biol. 38, 633-638 https://doi.org/10.5483/BMBRep.2005.38.6.633
  8. Liu, X. H., Wiley, H. S. and Meikle, A. W. (1993) Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-$\alpha$ (TGF-$\alpha$) and epidermal growth factor (EGF)/TGF-2 receptor. J. Clin. Endocrinol. Metab. 77, 1472-1478 https://doi.org/10.1210/jc.77.6.1472
  9. Mazhar, D., Ang, R. and Waxman, J. (2006) COX inhibitors and breast cancer. Br. J. Cancer 94, 346-350 https://doi.org/10.1038/sj.bjc.6602942
  10. Mimori, K., Mori, M., Shiraishi, T., Tanaka, S., Haraguchi, M., Ueo, H., Shirasaka, C. and Akiyoshi, T. (1998) Expression of ornithine decarboxylase mRNA and c-myc mRNA in breast tumors. Int. J. Oncol. 12, 597-601
  11. Pike, M. C., Spicer, D. V., Dahmoush, L. and Press, M. F. (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev. 15, 17-35 https://doi.org/10.1093/oxfordjournals.epirev.a036102
  12. Schrey, M. P. and Patel, K. V. (1995) Prostaglandin E$_{2}$ production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br. J. Cancer. 72, 1412-1419 https://doi.org/10.1038/bjc.1995.523
  13. Shon, Y. H. and Nam, K. S. (2003) Inhibition of polyamine biosynthesis of Acanthamoeba castellanii and 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity by chitosanoligosaccharide. Biotechnol. Lett. 25, 701-704 https://doi.org/10.1023/A:1023480701270
  14. Shon, Y. H., Nam, K. S. and Kim, M. K. (2004) Cancer chemopreventive potential of Scenedesmus spp. cultured in medium containing bioreacted swine urine. J. Microbiol. Biotechnol. 14, 158-161
  15. Spink, D. C., Spink, B. C., Cao, J. Q., DePasquale, J. A., Penteoost, B. T., Fasco, M. J., Li, Y. and Sutter, T. R. (1998) Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis 19, 291-298 https://doi.org/10.1093/carcin/19.2.291
  16. Steele, V. E. (2003) Current mechanistic approaches to the chemoprevention of cancer. J. Biochem. Mol. Biol. 36, 78-81 https://doi.org/10.5483/BMBRep.2003.36.1.078
  17. Thomas, T. and Kiang, D. T. (1987) Structural alterations and stabilization of rabbit uterine estrogen receptors by natural polyamines. Cancer Res. 47, 1799-1804

Cited by

  1. Genistein-induced LKB1–AMPK activation inhibits senescence of VSMC through autophagy induction vol.81, 2016, https://doi.org/10.1016/j.vph.2016.02.007
  2. Inverse Virtual Screening allows the discovery of the biological activity of natural compounds vol.20, pp.11, 2012, https://doi.org/10.1016/j.bmc.2012.03.072
  3. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer vol.12, pp.1, 2013, https://doi.org/10.1186/1476-4598-12-9
  4. Genistein alters caffeine exposure in healthy female volunteers vol.67, pp.4, 2011, https://doi.org/10.1007/s00228-010-0964-5
  5. Effects of prior oral contraceptive use and soy isoflavonoids on estrogen-metabolizing cytochrome P450 enzymes vol.112, pp.4-5, 2008, https://doi.org/10.1016/j.jsbmb.2008.10.001
  6. Prepubertal genistein exposure affects erbB2/Akt signal and reduces rat mammary tumorigenesis vol.19, pp.2, 2010, https://doi.org/10.1097/CEJ.0b013e3283362a3e
  7. Genistein promotes cell death of ethanol-stressed HeLa cells through the continuation of apoptosis or secondary necrosis vol.13, pp.1, 2013, https://doi.org/10.1186/1475-2867-13-63
  8. Effects of the estrogen mimic genistein as a dietary component on sex differentiation and ethoxyresorufin-O-deethylase (EROD) activity in channel catfish (Ictalurus punctatus) vol.35, pp.3, 2009, https://doi.org/10.1007/s10695-008-9260-z
  9. Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms vol.125, pp.2, 2009, https://doi.org/10.1002/ijc.24398
  10. Individual and combined soy isoflavones exert differential effects on metastatic cancer progression vol.27, pp.7, 2010, https://doi.org/10.1007/s10585-010-9336-x
  11. Potential Health-modulating Effects of Isoflavones and Metabolites via Activation of PPAR and AhR vol.2, pp.3, 2010, https://doi.org/10.3390/nu2030241
  12. The Effects of Genistein to Expression of Fatty Acid Synthase in Breast Cancer Cells vol.10, pp.2, 2007, https://doi.org/10.4048/jbc.2007.10.2.127
  13. Soy and Breast Cancer: Focus on Angiogenesis vol.16, pp.5, 2015, https://doi.org/10.3390/ijms160511728
  14. Nutritional factors and polyamine metabolism in colorectal cancer vol.24, pp.4, 2008, https://doi.org/10.1016/j.nut.2007.12.014
  15. Cancer Chemoprevention Through Dietary Antioxidants: Progress and Promise vol.10, pp.3, 2008, https://doi.org/10.1089/ars.2007.1740
  16. Inhibition of proliferation and induction of G1-phase cell-cycle arrest by dFMGEN, a novel genistein derivative, in lung carcinoma A549 cells vol.36, pp.2, 2013, https://doi.org/10.3109/01480545.2012.710620
  17. Genistein at Maximal Physiologic Serum Levels Induces G0/G1 Arrest in MCF-7 and HB4a Cells, But Not Apoptosis vol.17, pp.2, 2014, https://doi.org/10.1089/jmf.2013.0067
  18. Effects of genistein on β-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells 2010, https://doi.org/10.1002/jcp.22051
  19. The Combination of TRAIL and Isoflavones Enhances Apoptosis in Cancer Cells vol.15, pp.3, 2010, https://doi.org/10.3390/molecules15032000
  20. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer vol.70, pp.3, 2018, https://doi.org/10.1080/01635581.2018.1446091