DOI QR코드

DOI QR Code

Misfolding-assisted Selection of Stable Protein Variants Using Phage Displays

  • Shin, Jong-Shik (Functional Proteomics Center, Korea Institute of Science and Technology) ;
  • Ryu, Seung-Hyun (Functional Proteomics Center, Korea Institute of Science and Technology) ;
  • Lee, Cheol-Ju (Life Sciences Division, Korea Institute of Science and Technology) ;
  • Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technologyersity)
  • Received : 2005.03.04
  • Accepted : 2005.10.11
  • Published : 2006.01.31

Abstract

We describe a phage display strategy, based on the differential resistance of proteins to denaturant-induced unfolding, that can be used to select protein variants with improved conformational stability. To test the efficiency of this strategy, wild-type and two stable variants of ${\alpha}_1$-antitrypsin (${\alpha}_1AT$) were fused to the gene III protein of M13 phage. These phages were incubated in unfolding solution containing denaturant (urea or guanidinium chloride), and then subjected to an unfavorable refolding procedure (dialysis at $37^{\circ}C$). Once the ${\alpha}_1AT$ moiety of the fusion protein had unfolded in the unfolding solution, in which the denaturant concentration was higher than the unfolding transition midpoint ($C_m$) of the ${\alpha}_1AT$ variant, around 20% of the phage retained binding affinity to anti-${\alpha}_1AT$ antibody due to a low refolding efficiency. Moreover, this affinity reduced to less than 5% when 10 mg/mL skimmed milk (a misfolding-promoting additive) was included during the unfolding/refolding procedure. In contrast, most binding affinity (>95%) remained if the ${\alpha}_1AT$ variant was stable enough to resist unfolding. Because this selection procedure does not affect the infectivity of M13, the method is expected to be generally applicable to the high-throughput screening of stable protein variants, when activity-based screening is not possible.

Keywords

References

  1. Arnold, F. H. (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409, 253-257 https://doi.org/10.1038/35051731
  2. Barbas, C. F., 3rd, Kang, A. S., Lerner, R. A. and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978-7982 https://doi.org/10.1073/pnas.88.18.7978
  3. Buchholz, F. and Stewart, A. F. (2001) Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat. Biotechnol. 19, 1047-1052 https://doi.org/10.1038/nbt1101-1047
  4. Chen, K. and Arnold, F. H. (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90, 5618-5622 https://doi.org/10.1073/pnas.90.12.5618
  5. Cho, M. C., Lee, H. S., Kim, J. H., Choe, Y. K., Hong, J. T., Paik, S. G. and Yoon, D. Y. (2003) A simple ELISA for screening ligands of peroxisome proliferator-activated receptor g. J. Biochem. Mol. Biol. 36, 207-213 https://doi.org/10.5483/BMBRep.2003.36.2.207
  6. Clark, E. D. (2001) Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12, 202-207 https://doi.org/10.1016/S0958-1669(00)00200-7
  7. Creighton, T. E. (1992) Proteins in solution; in Proteins-Structures and Molecular Principles, Butler, E. A. (ed.), pp. 265-333, W H Freeman Co., New York, USA
  8. Erickson, L. A., Hekman, C. M. and Loskutoff, D. J. (1985) The primary plasminogen-activator inhibitors in endothelial cells, platelets, serum, and plasma are immunologically related. Proc. Natl. Acad. Sci. USA 82, 8710-8714 https://doi.org/10.1073/pnas.82.24.8710
  9. Giver, L., Gershenson, A., Freskgard, P. O. and Arnold, F. H. (1998) Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12809-12813 https://doi.org/10.1073/pnas.95.22.12809
  10. Hekman, C. M. and Loskutoff, D. J. (1985) Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J. Biol. Chem. 260, 11581-11587
  11. Im, H., Seo, E. J. and Yu, M. H. (1999) Metastability in the inhibitory mechanism of human ${\alpha}$1-antitrypsin. J. Biol. Chem. 274, 11072-11077 https://doi.org/10.1074/jbc.274.16.11072
  12. Im, H., Woo, M. S., Hwang, K. Y. and Yu, M. H. (2002) Interactions causing the kinetic trap in serpin protein folding. J. Biol. Chem. 277, 46347-46354 https://doi.org/10.1074/jbc.M207682200
  13. Jung, S., Honegger, A. and Pluckthun, A. (1999) Selection for improved protein stability by phage display. J. Mol. Biol. 294, 163-180 https://doi.org/10.1006/jmbi.1999.3196
  14. Kang, U. B., Baek, J. H., Ryu, S. H., Kim, J., Yu, M. H. and Lee, C. (2004) Kinetic mechanism of protease inhibition by ${\alpha}$1- antitrypsin. Biochem. Biophys. Res. Commun. 323, 409-415 https://doi.org/10.1016/j.bbrc.2004.08.105
  15. Kolkman, J. A. and Stemmer, W. P. (2001) Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19, 423-428 https://doi.org/10.1038/88084
  16. Kwon, K. S., Kim, J., Shin, H. S. and Yu, M. H. (1994) Single amino acid substitutions of ${\alpha}$1-antitrypsin that confer enhancement in thermal stability. J. Biol. Chem. 269, 9627- 9631
  17. Kwon, K. S., Lee, S. and Yu, M. H. (1995) Refolding of ${\alpha}$1- antitrypsin expressed as inclusion bodies in Escherichia coli: characterization of aggregation. Biochim. Biophys. Acta 1247, 179-184 https://doi.org/10.1016/0167-4838(94)00224-5
  18. Lawrence, D. A., Olson, S. T., Palaniappan, S. and Ginsburg, D. (1994) Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition. J. Biol. Chem. 269, 27657-27662
  19. Lee, C., Park, S. H., Lee, M. Y. and Yu, M. H. (2000) Regulation of protein function by native metastability. Proc. Natl. Acad. Sci. USA 97, 7727-7731 https://doi.org/10.1073/pnas.97.14.7727
  20. Lee, K. N., Im, H., Kang, S. W. and Yu, M. H. (1998) Characterization of a human ${\alpha}$1-antitrypsin variant that is as stable as ovalbumin. J. Biol. Chem. 273, 2509-2516 https://doi.org/10.1074/jbc.273.5.2509
  21. Lee, K. N., Park, S. D. and Yu, M. H. (1996) Probing the native strain in ${\alpha}$1-antitrypsin. Nat. Struct. Biol. 3, 497-500 https://doi.org/10.1038/nsb0696-497
  22. Li, M. (2000) Applications of display technology in protein analysis. Nat. Biotechnol. 18, 1251-1256 https://doi.org/10.1038/82355
  23. Lomas, D. A., Elliott, P. R., Chang, W. S., Wardell, M. R. and Carrell, R. W. (1995) Preparation and characterization of latent ${\alpha}$1-antitrypsin. J. Biol. Chem. 270, 5282-5288 https://doi.org/10.1074/jbc.270.10.5282
  24. May, O., Nguyen, P. T. and Arnold, F. H. (2000) Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat. Biotechnol. 18, 317-320 https://doi.org/10.1038/73773
  25. Mottonen, J., Strand, A., Symersky, J., Sweet, R. M., Danley, D. E., Geoghegan, K. F., Gerard, R. D. and Goldsmith, E. J. (1992) Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270-273 https://doi.org/10.1038/355055a0
  26. Oue, S., Okamoto, A., Yano, T. and Kagamiyama, H. (1999) Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J. Biol. Chem. 274, 2344-2349 https://doi.org/10.1074/jbc.274.4.2344
  27. Rodi, D. J. and Makowski, L. (1999) Phage-display technologyfinding a needle in a vast molecular haystack. Curr. Opin. Biotechnol. 10, 87-93 https://doi.org/10.1016/S0958-1669(99)80016-0
  28. Seo, E. J., Lee, C. and Yu, M. H. (2002) Concerted regulation of inhibitory activity of ${\alpha}$1-antitrypsin by the native strain distributed throughout the molecule. J. Biol. Chem. 277, 14216-14220 https://doi.org/10.1074/jbc.M110272200
  29. Shin, J. S. and Yu, M. H. (2002) Kinetic dissection of ${\alpha}$1- antitrypsin inhibition mechanism. J. Biol. Chem. 277, 11629- 11635 https://doi.org/10.1074/jbc.M111168200
  30. Silverman, G. A., Bird, P. I., Carrell, R. W., Church, F. C., Coughlin, P. B., Gettins, P. G., Irving, J. A., Lomas, D. A., Luke, C. J., Moyer, R. W., Pemberton, P. A., Remold- O'Donnell, E., Salvesen, G. S., Travis, J. and Whisstock, J. C. (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 276, 33293-33296 https://doi.org/10.1074/jbc.R100016200
  31. Stoop, A. A., Eldering, E., Dafforn, T. R., Read, R. J. and Pannekoek, H. (2001) Different structural requirements for plasminogen activator inhibitor 1 (PAI-1) during latency transition and proteinase inhibition as evidenced by phagedisplayed hypermutated PAI-1 libraries. J. Mol. Biol. 305, 773- 783 https://doi.org/10.1006/jmbi.2000.4356
  32. Su, Y.-C., Lim, K.-P. and Nathan, S. (2003) Bacterial expression of the scFv fragment of a recombinant antibody specific for Burkholderia pseudomallei exotoxin. J. Biochem. Mol. Biol. 36, 493-498 https://doi.org/10.5483/BMBRep.2003.36.5.493
  33. Whisstock, J. C., Skinner, R., Carrell, R. W. and Lesk, A. M. (2000) Conformational changes in serpins: I. The native and cleaved conformations of ${\alpha}$1-antitrypsin. J. Mol. Biol. 296, 685- 699 https://doi.org/10.1006/jmbi.1999.3520
  34. Wittrup, K. D. (2001) Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12, 395-399 https://doi.org/10.1016/S0958-1669(00)00233-0