DOI QR코드

DOI QR Code

An Antiviral Mechanism Investigated with Ribavirin as an RNA Virus Mutagen for Foot-and-mouth Disease Virus

  • Gu, Chao-Jiang (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Zheng, Cong-Yi (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Zhang, Qian (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Shi, Li-Li (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Li, Yong (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Qu, San-Fu (State Key Laboratory of Virology, College of Life Sciences, Wuhan University)
  • Received : 2005.06.29
  • Accepted : 2005.08.17
  • Published : 2006.01.31

Abstract

To prove whether error catastrophe /lethal mutagenesis is the primary antiviral mechanism of action of ribavirin against foot-and-mouth disease virus (FMDV). Ribavirin passage experiments were performed and supernatants of $Rp_1$ to $Rp_5$ were harvested. Morphological alterations as well as the levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected using the supernatants of $Rp_1$ to $Rp_5$ and control were measured by microscope, real-time RT-PCR, western-blotting and plaque assays, respectively. The mutation frequency was measured by sequencing the complete P1- and 3D-encoding region of FMDV after a single round of virus infection from ribavirin-treated or untreated FMDV-infected cells. Ribavirin treatment for FMDV caused dramatically inhibition of multiplication in cell cultures. The levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected were more greatly reduced along with the passage from $Rp_1$ to $Rp_5$, moreover, nucleocapsid protein could not be detected and no recovery of infectious virus in the supernatant or detection of intracellular viral RNA was observed at the $Rp_5$-infected cells. A high mutation rate, giving rise to an 8-and 11-fold increase in mutagenesis and resulting in some amino acid substitutions, was found in viral RNA synthesized at a single round of virus infection in the presence of ribavirin of $1000\;{\mu}M$ and caused a 99.7% loss in viral infectivity in contrast with parallel untreated control virus. These results suggest that the antiviral molecular mechanism of ribavirin is based on the lethal mutagenesis/error catastrophe, that is, the ribavirin is not merely an antiviral reagent but also an effective mutagen.

Keywords

References

  1. Andrei, G. and De Clercq, E. (1993) Molecular approaches for the treatment of hemorrhagic fever virus infections. Antiviral Res. 22, 45-75 https://doi.org/10.1016/0166-3542(93)90085-W
  2. Bachrach, H. L., Callis, J. J., Hess, W. R. and Patty, R. E. (1957) A plaque assay for foot-and-mouth disease virus and kinetics of virus reproduction. Virology 4, 224-236 https://doi.org/10.1016/0042-6822(57)90060-0
  3. Cassidy, L. F. and Patterson, J. L. (1989) Mechanism of La Crosse virus inhibition by ribavirin. Antimicrob. Agents Chemother. 33, 2009-2011 https://doi.org/10.1128/AAC.33.11.2009
  4. Cummings, K. J., Lee, S. M., West, E. S., Cid-Ruzafa, J., Fein, S. G., Aoki, Y., Sulrowski, M. S. and Goodman, S. N. (2001) Interferon and ribavirin vs interferon alone in the re-treatment of chronic hepatitis C previously nonresponsive to interferon: A meta-analysis of randomized trials. J. Am. Med. Assoc. 285, 193-199 https://doi.org/10.1001/jama.285.2.193
  5. De Clercq, E. (2004) Antiviral drugs in current clinical use. J. Clin. Virol. 30, 115-133 https://doi.org/10.1016/j.jcv.2004.02.009
  6. Delphine, B., Marie-Pierre, E., Laurence, M., Catherine, G., Jean- Louis, R. and Bruno, C. (2004) A Structural Basis for the inhibition of the NS5 dengue virus mRNA 2-Omethyltransferase domain by ribavirin 5-triphosphate. J. Biol. Chem. 279, 35638-35643 https://doi.org/10.1074/jbc.M400460200
  7. Di Bisceglie, A, M., Thompson, J., Smith-Wilkaitis, N., Brunt, E. M. and Bacon, B. R. (2001) Combination of interferon and ribavirin in chronic hepatitis C: Re-treatment of nonresponders to interferon. Hepatology 33, 704-707 https://doi.org/10.1053/jhep.2001.22346
  8. Domingo, E., Martinez-Salas, E., Sobrino, F., de la Torre JC, Portela, A., Ortin, J., Lopez-Galindez, C., Perez-Brena, P., Villanueva, N., Najera, R., Vandepol, S., Steinhauer, D., Depolo, N. and Holland, J. (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: Biological relevance-A review. Gene 40, 1-8 https://doi.org/10.1016/0378-1119(85)90017-4
  9. Eriksson, B., Helgstrand, E., Johansson, N. G., Larsson, A., Misiorny, A., Noren, J. O., Philipson, L., Stenberg, K., Stening, G., Stridh, S. and Oberg, B. (1977) Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob. Agents Chemother. 11, 946-951 https://doi.org/10.1128/AAC.11.6.946
  10. Fernandez-Larsson, R., O'Connell, K., Koumans, E. and Patterson, J. L. (1989) Molecular analysis of the inhibitory effect of phosphorylated ribavirin on the vesicular stomatitis virus in vitro polymerase reaction. Antimicrob. Agents Chemother. 33, 1668-1673 https://doi.org/10.1128/AAC.33.10.1668
  11. Isabelle Bougie and Martin Bisaillon (2004) The broad spectrum antiviral nucleotide ribavirin as a substrate for a viral RNA capping enzyme. J. Biol. Chem. 279, 22124-22130 https://doi.org/10.1074/jbc.M400908200
  12. Jason, D. Graci and Craig E, Cameron. (2002) Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology 298, 175-180 https://doi.org/10.1006/viro.2002.1487
  13. Krilov, L. R. (2001) Respiratory syncytial virus: Update on infection, treatment, and prevention. Curr. Infect. Dis. Rep. 3, 242-246 https://doi.org/10.1007/s11908-001-0026-3
  14. Maag, D., Castro, C., Hong, Z. and Cameron, C. E. (2001) Hepatitis C Virus RNA-dependent RNA Polymerase (NS5B) as a Mediator of the Antiviral Activity of Ribavirin. J. Biol. Chem. 276, 46094-46098 https://doi.org/10.1074/jbc.C100349200
  15. Shane, C., David, M., Jamie, J. A., Weidong, Z., Johnson, Y. N., Zhi, H., Raul, A. and Craig, E. C. (2000) The broad-spectrum antiviral ribonucleotide ribavirin is an RNA virus mutagen. Nature Med. 6, 1375-1379 https://doi.org/10.1038/82191
  16. Shane, C. and Raul, A. (2002) Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes Infection 4, 1301-1307 https://doi.org/10.1016/S1286-4579(02)00008-4
  17. Sidwell, R. W., Huffman, J. H., Khare, G. P., Allen, L. B., Witkowski, J. T. and Robins, R. K. (1972) Broad-spectrum antiviral activity of virazole:1-Beta-D-ribofuranosyl-1,2,4-triazole- 3-carboxamide. Science 177, 705-706 https://doi.org/10.1126/science.177.4050.705
  18. Snell, N. J. (2001) Ribavirin-current status of a broad spectrum antiviral agent. Expert Opin. Pharmacother. 2, 1317-1324 https://doi.org/10.1517/14656566.2.8.1317
  19. Streeter, D. G. (1973) Mechanism of action of 1-beta-Dribofuranosyl- 1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc. Natl. Acad. Sci. USA 70, 1174-1178 https://doi.org/10.1073/pnas.70.4.1174
  20. Stuart, N. (1996) Life on the edge of catastrophe. Nature 384, 218-219 https://doi.org/10.1038/384218a0
  21. Toltzis, P., O'Connell, K. and Patterson, J. L. (1988) Effect of phosphorylated ribavirin on vesicular stomatitis virus transcription. Antimicrob. Agents Chemother. 32, 492-497 https://doi.org/10.1128/AAC.32.4.492
  22. Wray, S. K., Gilbert, B. E. and Knight, V. (1985) Effect of ribavirin triphosphate on primer generation and elongation during influenza virus transcription in vitro. Antiviral Res. 5, 39-48 https://doi.org/10.1016/0166-3542(85)90013-0
  23. Wray, S. K., Gilbert, B. E., Noall, M. W. and Knight, V. (1985) Mode of action of ribavirin: effect of nucleotide pool alterations on influenza virus ribonucleoprotein synthesis. Antiviral Res. 5, 29-37 https://doi.org/10.1016/0166-3542(85)90012-9
  24. Wyde, P. R. (1998) Respiratory syncytial virus (RSV) disease and prospects for its control. Antiviral Res. 39, 63-79 https://doi.org/10.1016/S0166-3542(98)00029-1
  25. Xu, Z., Kuang, M., Okicki, I. R., Cramer, H. and Chaudhary, N. (2004) Potent inhibition of respiratory syncytial virus by combination treatment with 2-5A antisense and ribavirin. Antiviral Res. 61, 195-206 https://doi.org/10.1016/j.antiviral.2003.10.005

Cited by

  1. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection vol.157, pp.4, 2012, https://doi.org/10.1007/s00705-011-1222-6
  2. In vitroanti-influenza activity of a protein-enriched fraction from larvae of the housefly (Musca domestica) vol.51, pp.3, 2013, https://doi.org/10.3109/13880209.2012.723724
  3. Effects of ribavirin on the replication and genetic stability of porcine reproductive and respiratory syndrome virus vol.11, pp.1, 2015, https://doi.org/10.1186/s12917-015-0330-z
  4. Structure-function analysis of mutant RNA-dependent RNA polymerase complexes with VPg vol.74, pp.10, 2009, https://doi.org/10.1134/S0006297909100095
  5. Interferon-based therapy of hepatitis C vol.59, pp.12, 2007, https://doi.org/10.1016/j.addr.2007.07.002
  6. Analysis of Foot-and-mouth disease virus nucleotide sequence variation within naturally infected epithelium vol.140, pp.1-2, 2009, https://doi.org/10.1016/j.virusres.2008.10.012
  7. Molecular Dynamics Simulations of Viral RNA Polymerases Link Conserved and Correlated Motions of Functional Elements to Fidelity vol.410, pp.1, 2011, https://doi.org/10.1016/j.jmb.2011.04.078
  8. Potential applications for antiviral therapy and prophylaxis in bovine medicine vol.15, pp.01, 2014, https://doi.org/10.1017/S1466252314000048
  9. The Attenuation Phenotype of a Ribavirin-Resistant Porcine Reproductive and Respiratory Syndrome Virus Is Maintained during Sequential Passages in Pigs vol.90, pp.9, 2016, https://doi.org/10.1128/JVI.02836-15