PFC2D 활용을 위한 정량적 미시변수 결정법

Suggested Method for Determining a Complete Set of Micro-Parameters Quantitatively in PFC2D

  • 정용훈 (서울대학교 에너지자원신기술연구소) ;
  • 이정인 (서울대학교 공과대학 지구환경시스템공학부)
  • 발행 : 2006.08.31

초록

개별요소법을 사용한 수치해석 프로그램인 PFC2D는 암석역학에 많이 사용되고 있다. 그러나 해석 모델을 구성하는 입자와 접촉의 특성을 결정하기 위해서는 시행오차적인 지루한 반복 과정을 거쳐야 한다. 본 연구에서는 해석 모델을 정의하는 미시변수가 일축압축시험으로부터 얻어지는 거시 물성에 미치는 영향을 분석하였다. 또한 분석 결과에 기초하여 간단하고 신뢰할 수 있는 정량적인 미시변수 결정법을 제안하였다. 제안된 미시변수 결정법을 검증하기 위하여 10종류의 암석 시험편을 생성하기 위한 수치 실험을 수행하였다. 그 결과 단 2회의 수치 실험만으로 탄성계수 포아송비 그리고 일축압축강도를 실험실 시험값과의 상대오차 % 내외로 재현할 수 있었다.

The discrete element code in 2-D, PFC2D, has been used as a tool to simulate various phenomena in rock mechanics and rock engineering. However, the code has an disadvantage that procedure to determine micro-parameters, namely properties of particles and contacts is repetitive and time-consuming. In this study, we analyzed the effect of micro-parameters(for generation of a contact-bonded model) on macro-properties(that were measured numerically by uniaxial compressive test). Based on the analysis, also, the time-saving and reliable method was suggested to determine a complete set of micro-parameters. In order to verify the suggested method, numerical specimens were generated in PFC2D for 10 different rock types at home and abroad. By the two trials for each specimen, in the result, the Young's modulus, Poisson's ratio and uniaxial compressive strength could be reproduced with being in relative error by about 5% to the values obtained by laboratory tests.

키워드

참고문헌

  1. Boutt, D.F., McPherson, B.J.O.L., Simulation of sedimentary rock deformation: Lab-scale model calibration and parameterization, Geophysical Research Letters, Vol. 29, No.4, pp. 13-1 -4
  2. Hazzard, J.F., Young, R.P., 2000, Simulating acoustic emissions in bonded-particle models of rock, International Journal of Rock Mechanics & Mining Sciences, Vol. 37, pp 867 -872 https://doi.org/10.1016/S1365-1609(00)00017-4
  3. Hazzard, J.F., Young, R.P., 2004b, Numerical investigation of induced cracking and seismic velocity changes in brittle rock, Geophysical Research Letters, Vol. 31, pp. L01604 https://doi.org/10.1029/2003GL019190
  4. Hazzard, J.F., Young, R.P., Maxwell, S.C., 2000, Micromechanical modeling of cracking and failure in brittle rocks, Journal of Geophysical Research, Vol. 105, No. B7, pp. 16683-16697 https://doi.org/10.1029/2000JB900085
  5. Hunt S.P., Meyers, A.G., Louchnikov, V, 2003, Modelling the Kaiser effect and deformation rate analysis in sandstone using the dis crete element method, Computers and Geotechnics, Vol. 30, pp. 611 - 621 https://doi.org/10.1016/S0266-352X(03)00061-2
  6. Kulatilake, P.H.S.W., Malama, B., Wang, J, 2001, Physical and particle flow modeling of jointed rock block behaviour under uniaxial loading, International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 641-657 https://doi.org/10.1016/S1365-1609(01)00025-9
  7. Cundall, P.A., 2000, Numerical experiment, on rough joint' in sh e ar using a bonded particel model, Aspects of Tectonic Faulting (editor Lehner, F.K., Urai, J.L.), Springer-Verlag Telos, pp. 1-10
  8. Kebeya, 1999, Investigation into the peak shear behaviour of rock joints using physical and numerical modelling, Proceedings of the 37th US Rock mechanic, Symposium, pp. 439 -446
  9. O'Sullivan, C, Cui, L., Bray, J.D., 2004, Threedimensional discrete element simulations of direct shear tests, Proceedings of the 2nd International PFC Symposiurn, pp. 373-382
  10. Wang, C, Tannant, D.D., Lilly, FA, 2003, Numerical analysis of the stability of heavily jointed rock slopes using PFC2D, International Journal of Rock Mechanics & Mining Science, Vol. 40, pp. 415-424 https://doi.org/10.1016/S1365-1609(03)00004-2
  11. Fakhimi, A., Carvalho, F., Ishida, T, Labuz, J.F., 2002, Simulation of failure around a circular opening in rock, International Journal of Rock Mechanics & Mining Science, Vol. 39, pp. 507-515 https://doi.org/10.1016/S1365-1609(02)00041-2
  12. Hazzard, JF, Young, R.P., 2002, Moment tensors and micromechanical models, Tectonophysics, Vol. 356, pp. 181-197 https://doi.org/10.1016/S0040-1951(02)00384-0
  13. Hazzard, J.F., Young, R.P., 2004, Dynamic modelling of induced seismicity, International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 1365-1376 https://doi.org/10.1016/j.ijrmms.2004.09.005
  14. McNearny, R.L., Barker, K.A., 1998, Numerical modeling of large-scale block cave physical models using PFC2D, Mining Engineering, Vol. 50, pp. 72-75
  15. Wang, C, Tannant, D.D., 2004, Rock Fracture around a highly stresses tunnel and the impact of a thin tunnel liner for ground control, International Journal of Rock Mechanics & Mining Sciences, Vol. 41, No.3, Paper 2B 35 https://doi.org/10.1016/j.ijrmms.2004.03.010
  16. 최병희, 양형식, 류창하, 2005, PFC를 이용한 콘크리트기둥의 발파모델링, 대한화약발파공학회지, 제23권 제1호, pp. 47-54
  17. Jong, Y., Lee, C.-I, Jeon, S, Cho, Y.-D, Shim, D.-S, 2005, Numerical Modeling of the Circular-Cut using Particle Flow Code, Proceedings of the 31th Annual Conference on Explosives & Blasting Technique Vol. 1, (CD-Rom)
  18. Potyondy, D.O., Cundall, P.A., 1996, Modeling of shock- and gas-driven fractures induced by a blast using bonded assemblies of spherical particles, Proceeding, of the 5th International Symposium on Rock Fragmentation by Blasting, pp. 55-62
  19. te Kamp, L, Konietzky, H, Guerin, F, 1998, Modelling of the Chagan underground nuclear test with the distinct element method, International Journal of Blasting and Fragmentation, Vol. 2, pp. 295 - 312
  20. Potyondy, D.O., Cundall, P.A., 2004, A bonded-particle model for rock, International Journal of Rock Mechanics & Mining Science, Vol. 41, pp. 1329-1364 https://doi.org/10.1016/j.ijrmms.2004.09.011
  21. Potyondy, D.O., Cundall, P.A., 2001, The PFC model for Rock: Predicting rock-mass damage at the underground research laboratory, Report 06819-REP-01200-10061-ROO, Ontario Hydro, Nuclear Waste Management Division
  22. Itasca Consulting Group, 2002, Fish in PFC2D, Minneapolis
  23. Mongomery, D.C., 1997, Design and analysis of experiments, New York: John Wiley & Sons, 699 p
  24. 정용훈, 2006, 발파에 의한 굴착손상영역의 수치해석적 산정, 공학박사학위논문, 서울대학교 대학원
  25. 장수호, 2002, 용력수준에 따른 암석의 손양 특성과 심부 터널 주변 암반 손상영역의 해석, 공학박사학위논문, 서울대학교 대학원
  26. 홍지수, 2004, Characteristic, of Creep Deformation Behavior of Granite under Uniaxial Compression, 공학석사학위논문, 서울대학교 대학원
  27. 정용복, 2000, 저온하에서의 암반의 변형 거동 및 파괴 특성에 관한 연구, 공학박사학위논문, 서울대학교 대학원
  28. 허종석, 2001, 삼축 압축 하에서 암석의 미소파괴음 측정과 변형 파괴 특성, 공학박사학위논문, 서울대학교 대학원
  29. Zang, A., 1999, Akustische Emissionen beim Sprodbruch von Gestein, Habilitationsschrift, Unversity of Potsdam, Scientific Technical Report STR97/19
  30. Alber, M, Hauptfleisch, U, 1999, Generation and visualization of microfractures in Cararra marble for estimating fracture toughness fracture shear and fracture normal stiffness, International Journal of Rock Mechanic, and Mining Sciences, Vol. 36, pp. 1065-1071 https://doi.org/10.1016/S1365-1609(99)00069-6
  31. Backers, T., 2004, Fracture toughness determination and micromechanics of rock under mode I and mode II loading, Ph.D. Thesis Unversity of Potsdam
  32. Chang, S.-H, Seto, M., Lee, C.-I., 2001, Damage and fracture characteristics of Kimachi sandstone in uniaxial compression, Geosystem Engineering, Vol. 4, No.1, pp 18-26 https://doi.org/10.1080/12269328.2001.10541163
  33. JNC (Japan Nuclear Cycle) Development Institute, 2003, Mizunami underground research laboratory project Results from 1996-1999 period
  34. Alber, M., Heiland, J., 2001, Investigation of a limestone pillar failure: Part 1. stress history and application of fracture mechanic, approach, Rock Mechanic. and Rock Engineering, Vol. 34, pp 187-199 https://doi.org/10.1007/s006030170008