International Journal of Information Processing Systems, Vol.2, No.3, December 2006 183

A Light-weight and Dynamically Reconfigurable RMON Agent System

Jun-Hyung Lee*, Zin-Won Park*, and Myung—Kyun Kim*

Abstract: A RMON agent system, which locates on a subnet, collects the network traffic information
for management by retrieving and analyzing all of the packets on the subnet. The RMON agent system
can miss some packets due to the high packet analyzing overhead when the number of packets on the
subnet is huge. In this paper, we have developed a light-weight RMON agent system that can handle a
large amount of packets without packet loss. Our RMON agent system has also been designed such
that its functionality can be added dynamically when needed. To demonstrate the dynamic
reconfiguration capability of our RMON agent system, a simple port scanning attack detection module
is added to the RMON agent system: We have also evaluated the performance of our RMON agent
system on a large network that has a huge traffic. The test result has shown our RMON agent system

can analyze the network packets without packet loss.

Keywords: Network management, RMON agent system, Dynamic reconfiguration.

1. Introduction

In traditional SNMP-based centralized network
managements, a network manager collects information
about network statistics from all of the agents and performs
a specific management function, so it becomes a bottleneck
due to its great processing load and a large amount of
network traffic to the manager. The network management
using RMON agent systems can reduce both the processing
overhead of the network manager and the amount of traffic
to the manager [1]. A RMON agent system locates on a
subnet and collects network traffic statistics on the subnet,
and transmits the information to the central manager when
requested. The management information to be collected by
the RMON agent systems are defined in RMON 1, and
RMON 2 MiIBs [2, 3]. RMON 2 MIB defines the
management information on the network traffic statistics
based on the upper layer (layer 3 or more) addresses, while
RMON 1 MIB defines the network traffic statistics based
on the data-link layer addresses. The RMON agent system
captures all the packets sent on the subnet and analyzes the
packet header to collect the management information
defined in the RMON MIBs. So, when the number of
packets is large, the processing(analyzing the packet
header) load of the RMON agent system becomes great,
and the RMON agent system may miss the packets that
arrive while processing the packets already received. The
traditional SNMP-based RMON agent system cannot
easily extend its functionality dynamically [4].

Manuscript received October 5, 2005; accepted August 7, 2006.

The authors would like to thank Ministry of Commerce, Industry and

Energy and Ulsan Metropolitan City for their support of this research

through the Network-based Automation Research Center (NARC) at

University of Ulsan.

Corresponding Author: Myung—Kyun Kim

* School of Computer Engineering and Information Technology,
University of Ulsan (mkkim@ulsan.ac.kr)

In this paper, we describe the development of a RMON
agent system that can be used on a large network without
packet loss. We have implemented the management
information only in RMON 2 MIB, and the module structure
of the RMON agent system is designed to minimize the
packet processing overhead. Our RMON agent system is
also designed such that a new functionality can be added
dynamically while running, when needed. Our RMON agent
system is light-weight in terms of the following two aspects:
The first one is that we have designed a data structure
including all of the basic RMON 2 MIB information such
that redundant information can be eliminated as much as
possible and the data structure can be maintained in
memory; the second one is that we have designed the
module structure to be light, and the network manager can
start the RMON agent system just with basic functionality
only, and after that, a new functionality can be added when
neceded. To demonstrate the dynamic reconfiguration
capability of our RMON agent system, a simple port
scanning attack detection module is added to the RMON
agent system. We have also evaluated the performance of
our RMON agent system on a large network that has a huge
traffic. The test result has shown our RMON agent system
can analyze the network packets without packet loss.

Section 2 describes our RMON MIB data structure and
the module architecture of our RMON agent system and
the desciiption of each of the modules. Section 3 describes
the implementation of the RMON agent system and a port
scanning attack detection module that is added to show the
dynamic reconfiguration capability. Section 4 describes the
performance evaluation of our RMON agent system, and in
Section 5, we conclude our paper.

2. Design of our RMON Agent System

In this section, we describe our RMON data structure

Copyright © 2006 KIPS (ISSN 1738-8899)

184 A Light-weight and Dynamically Reconfigurable RMON Agent System

and the overall architecture of our RMON agent system. The
RMON agent system collects the network management
information on the subnet and sends it to the network
manager when requested. The architecture of our RMON
agent system is shown in Fig. 1. The communication
between the network manager and the RMON agent system
is done using HTTP, which allows an easy access from the
network manager to the RMON agent system.

RMON Agent
ﬁ > Generator
Agent —O Plugin-Module 1
Request Plugin
|:“> Management E:> 9 "O Plugin-Module 2
l¢ Analysis Module Module
Module Manager
{ OO \ Plugin-Module n
Packet Capture
Module
L h
Network

Fig. 1. The architecture of our RMON agent system
2.1 RMON MIB Data Structure

We have implemented RMON 2 MIB only in this paper.
RMON 2 MIB defines the management information to be
collected by a RMON agent system. RMON 2 MIB
consists of 10 groups and, each of which consists of a
control table and several data tables. The control table
defines a function that describes how to collect the required
management information in a data table. In RMON 2 MIB,
there was a number of information that was defined
redundantly in many groups. For example, IP addresses of
source and destination nodes are defined in many groups,
so we have to store and maintain such kind of information
in multiple places redundantly. In this paper, we have
designed a RMON data structure to reduce the redundancy
as much as possible. The reduced RMON data structure
can be maintained in main memory to minimize the access
time to the required table. We have represented each of
RMON control tables as an independent table, and all of
the data tables have been connected using a hash table
whose access key is a source IP address. Fig. 2 shows a
RMON data structure represented as a linked list using a
hash table.

2.2 Request Analysis Module

The request analysis module interprets the requests from
the manager and sends the result to the agent management
module. The management operation requested from the
manager includes the request of management information,

the addition of a plug-in module that collects new
management information, or the deletion of a plug-in
module, etc. The request analysis module returns the
response from the agent management module back to the
manager. The RMON agent system returns the requested
management information in XML form, which can be
handled easily by the web browser.

SourceIP_Address

amEntry

amPhysicalAddress
Hash(MD5) amLastChange
Address nihEnty
ne
WITPHs, Th0uPs nimSDEnty
nhinDetets, AOuDctets nimSODestAddress
Ks AlmSDPKs, nmSDOctets
oA | nlhCreateTime nimSDCreateTime
S] ottt
~J
\
ahSenvce = UDP ahE
\ alhEnty alhinPlts, alhOuPkts i
- alhinOctets, alhOutOctets
alhSersice = 1CP albCreateTime,
alhlnPits. alhQutPkts next
alhinOctets, ERETTYETTTEE
ahOutOctsts pALM=NILL
|- aihCreateTime I T
T TR ahGerds -
pHM: ML ahinfiis, ahOuPes
alhinOctets, hOutctets,
it T ahCreateTime, amSDEntry
alhlnPXts, alhOut Fanext
alhlnOctets, alhOutOctets 1 a;mggg;?“gﬁgsz
ahCreateTime R I e
“neH nexLpALM B

—
\ anSDERy

alhService = FTP
alhinPits. alhOutPkts aimSDDestAddress
alhinOctets, alhOutOctets aImSDPKs, 2mSD0ctets
| ahCreateTime amSDCreateTime
next nextpAM s
PAM &
~a amSDEny
almSODestAddress
alm30Pks, #mSDOctets |
almSDCreateTime
néx pAM

Fig. 2. RMON MIB data structure
2.3 Packet Capture Module

The packet capture module retrieves all of the raw
packets from the subnet and stores to the packet buffer
queue. We used the libpcap packet capture library to
retrieve the packets. To minimize the overhead of capturing
and copying packets, the number of bytes to be captured in
each packet is set to only include the protocol header of the
packet. The packets stored in the packet buffer queue are
shared among the packet capture module and the plug-in
modules which analyze the packets to collect management
information.

2.4 Agent Management Module

The agent management module performs the core
functions of the RMON agent system such as the
following:

e Control to all of the modules in the RMON agent
system that is executed in a separate thread;

e Add, delete, or update a plug-in module through the
plug-in manager module;

e Distribute the packets stored in the packet buffer
queue among the plug-in modules through the plug-in
manager module;

Jun-Hyung Lee, Zin-Won Park, and Myung—Kyun Kim 185

o Store the management information collected by the
RMON agent periodically to the disc storage.

2.5 Plug-in Manager Module

The plug-in manager module controls the plug-in modules
which analyzes the packets and collects necessary manage-
ment information. It also delivers the packets received from
the agent management module to the plug-in module. To
minimize the packet copying overhead, only the pointer to the
packet in the packet buffer queue is delivered. The type of
messages delivered from the plug-in manager module to the
plug-in modules is shown in Table 1.

Table 1. Message type delivered from the plug-in manager
module to the plug-in modules

Message Function
InitModule Initialize the plug-in module
StartModule Start the plug-in module
StopModule Suspend the plug-in module

CloseModule Terminate the plug-in module
AddPacket Add a packet to the plug-in module
GetData Request management information
SendMessage User-defined control message

2.6 XML Generation Module

The XML generation module receives management
information from a plug-in module and converts it to a
XML document to be sent to the network manager [5]. The
agent management module receives the XML documents
from the plug-in modules and combines them into a
complete XML document to be delivered to the manager
via the request analyzer module or to be stored to the disc
storage. Fig. 3 shows an example of XML documents
generated by the XML generation module.

<?xml version="1.0"?>
<RMONZ2>
<Thread id=0>
<addressMap><Address [P="1.2.3.4" ... /></addressMap>
<nlHost><Address IP="1.2.3.4” ... /></nlHost>
<nlMatrix><Source IP="1.2.3.4" ...><Dest [P="1.2,3,5” /></Source> ... </nIMatrix>
<alHost>
<Source [P=1.2.3.4" ... >
<Service Port="80" ... />

</Source>

</alHost>
<alMatrix>
<Source IP="1.2.3.4" ... >
<Service Port="80" ... >
<Dest IP="1.2.3.5" ... />

</Service>
</Source>
</alMatrix>
</Thread>
</RMON2>

Fig. 3. XML document generated by the XML generation
module

2.7 Plug-in Module

The plug-in module which is executed in a separate
thread analyzes the packets retrieved by the packet capture
module and collects the required management information.
We can set accordingly the number of plug-in modules that
collect RMON management information in order to
minimize the number of packet losses during analyzing.

XML Generator

r 2. Management lnformatioﬁ 3. XML Data

1. Request Data

Management
Data Structure
4. Send XML Data

Analysis and
Store
Message
Control Packet Analysis
Message, Module
Handler f Dequeue

Packet Enqueue @

Fig. 4. Structure of the plug-in module

Table 2. Types of Dynamic RMON Operations.

RMON operations Description
GetConfiguration aRg(l;::g—sltn c;lr(l)f;illl;ation information of
GetData Request management information
InsertPlugin Insert a plug-in module
DeletePlugin Delete a plug-in module
UpdatePlugin Update a plug-in module
SendMessage Send user-defined data

We can add the functionality of the RMON agent system
by preparing the plug-in module that executes the function,
and simply adding it through the plug-in manager module.
For the dynamic control (addition, suspension, or deletion)
of the added plug-in module, the plug-in module must have
the structure as shown in Fig. 4. The plug-in manager
module controls the plug-in module according to the
messages shown in Table 1. The message handler of the
plug-in module parses the message from the plug-in
manager module and performs the required operation. The
packet analyzing module analyzes the packets in its packet
queue. To minimize the packet copying overhead, there are
only pointers to the actual packets in the packet queue of
the plug-in module. If the message from the plug-in
manager module is ‘GetData’, the message handler sends
the collected management information to the XML
generation module and requests to convert it into the XML
document. The message handler sends the XML document

186 A Light-weight and Dynamically Reconfigurable RMON Agent System

to the agent management module though the plug-in
manager module.

2.8 Control Message Between The Network Manager
and The RMON Agent System

The communication between the manager and the
dynamic RMON agent system is done by HTTP. We have
added a ISAPI [6] module ‘RMON’ to the web server for
the dynamic RMON operation. The URL to access the
dynamic RMON agent system has the following form:

http://rmon_hostRMON ?command=<commandString
>&argl=<argument]>&arg2=<argument2>& ...

‘command’ specifies the RMON operation to be performed
by the dynamic RMON agent system. The type of
operation to be performed is shown in Table 2.

2.9 Packet queue management

The packets captured by the packet capture module are
stored in the packet buffer queue in the agent management
module. The packets are needed by the plug-in modules to
analyze and collect necessary management information. The
packets are distributed by the plug-in manager module to the
packet queues in the plug-in modules. To minimize the
overhead due to packet copying, the plug-in manager
module copies to the packet queue in the plug-in modules
only the pointers to the actual packet in the packet buffer
queue. Thus, the packets in the packet buffer queue are
shared among the plug-in modules by the pointers in the
packet queues as shown in Fig. 5. Each packet in the packet
buffer queue has a reference counter which denotes the
number of plug-in modules sharing the packet. After the
plug-in module processes a packet pointed by the pointer in
its packet queue, the reference counter to the packet is
decremented. When the reference counter becomes 0, the
packet is deleted from the packet buffer queue.

Packet Analysis Plugin-Module
Packet Packet Packet Plugin-Module 2
Analysis Analysis Analysis
Thread 1 Thread 2 Thread 3
Plugin
Thread 1
| /
! V4 >/ / 12
i A Pt / e
| N A / /! BT
'\ / 7 ‘\‘ / / /' Plugin-Module 3
I / /
y
i ! Y / /7 :
\ { A 1 / Plugin
\ | 7\ || AddingPugn. S s Thread 1
\\ \\ JAY J Module 3 - /|

_~ Pointer of Packet Data in
» PacketQueue

Fig. 5. Sharing of packets among plug-in modules

3. Implementation of Our RMON Agent System

We have implemented our RMON agent system using
Visual C++ on Windows XP, and have used ‘winpcap’
packet capture library [6] for packet capturing. The
management information is returned from the RMON
agent in XML document. Fig. 6 shows the result returned
from the RMON agent for the request of management
information. We have used a low-level standard C file /O
library to improve generating XML files instead of
Microsoft’s XML parser APls.

Q-3 @B L w720 Arwiatng awdex0
‘AddressMap
» TimeMark PhysicalAddress LastChange
203.226.253.134 1086520177 00:08:02:68:3D4E 1086520177
203.250.77.193 1086520188 00:08:02:68:8D4E 1086520188
203.250.77.254 1086520111 00:04:38:AC52:03 1086520171
203.250.77.255 1086520182 0020AF-7D48F4 1086520175
203.250.77.134 1086520152 0020:AF:7D48F4 1086520173
203.250.77.182 1086520174 D010ATIEL4F3 1086520174
207.46.106.161 1086520188 000802:68:8D4E 1086520188
Network Layer Host (nlHost)
» TimeNark TnPkts OxtPkts InOctets OuntOctets
203.226.253.134 1086520177 1 40 165
203.250.77.193 1086520188 4 3 165 125
203.250.77.254 1086520171 1] 1 0 532
203.250.71.255 1086520182 10 0 1206 0
203.250.77.134 1086520182 0 8 0 624
203.250.77.182 1086320174 0 1 [78
207.46.106.161 1086520188 2 1 45 40
Network Layer Matrix (nlMatrix)
[Sowee® | DestP | TimeMark | Pits i Ocrets [CreateTime |
[ovarea | w0103 | 1ovesdosns | 3 [165 I ingeomes |+
28 &) 2 JE

Fig. 6. Request result of management information.

- The functionality of our RMON agent system can be
extended dynamically by simply adding a new plug-in
module. To show the dynamic reconfiguration capability of
our RMON agent system, we have implemented a simple
port scan detection plug-in module and added it to our
RMON agent system. Port scanning attack is done by a
malicious user to find a system’s weak point for future
attacks. There are many ways of detecting port scanning
attacks [7, 8]. In this paper, we have implemented a simple
port scanning attack detection to simplify the
implementation of the plug-in module. Fig. 7 shows the
flow of the port scan detection module. The agent
maintains a host list table that sends packets to the host.
Each entry of the host list table contains the source IP
address, the packet inter-arrival time among successive
packets from the source, and the number of ports to which
the source sends packets. We have classified a packet as a
port scanning attack packet from a malicious host if the
packet inter-arrival time from the host is less than
T_THRESHOLD (time threshold) and the number of ports
to which the host sends packets is greater than
PC THRESHOLD (port count threshold).

The port scan detection plug-in module is
dynamically added to the RMON agent system. Fig. 8
shows the result when the RMON agent system detects
the port scan attacks.

Jun-Hyung Lee, Zin-Won Park, and Myung—Kyun Kim 187

B
v

Packet Capture
Do we know this
address already? —No
Yes Add to
; Host List L
host.time <=
T THRESHOLD No
Yés
v 4
Update Delete from
time of host Host List g
T
Port_count > No-
PC_THRESHOLD
Yes
v N
Alert: port scan Update Port_count
attack detect Of Host List v

Fig. 7. The flow of port scan detection module

15 RMONSetver
J|Rad
From 203.250,77. 185 to 203,250, 7. 193 ports 6112, 515, 355, 830, 2001, 343, 983, 1424, 977, .., flags frpaus
T 64, started at 20:13:01

]

Fig. 8. An example showing port scan attack detection

4. Performance Evaluation

We have performed two experiments of our RMON
agent system using a computer that has a Pentium 4-
1.7GHz single CPU and 512MBytes main-memory.

We have performed the experiments for 2 minutes on
10Mbps and 100Mbps networks, respectively. In the
experiments, a large number of packets were generated
using FTP applications among many clients and servers.
We have evaluated the resource utilization of the RMON
agent system to see the number of packet losses and the
processing overhead of the RMON agent system. Table 3
shows the resource utilization of the RMON agent system.
As shown m the table, there were no packet losses on both
numbers, and CPU utilization was less than 10 % on the 10
Mbps network, and less than 20% on the 100 Mbps network.

Table 3. Resource Utilization

. Network
0,
Bandwidth | Drop | CPU (%) Memory Utilization
10Mbps 0 5~10 8,900Kb 90%
100Mbps 0 10~20 9,800Kb 70%

Fig. 9 shows the maximum number of packets remained
in the shared packet queue according to the number of
packet analysis threads. As shown in the Fig., for a given
number of packet analysis threads, the number of packets
remained in the shared packet queue has increased for
some time, but the maximum number of packets in the
queue was saturated to a certain value (about 110 packets
in the case of 1 thread, and about 45 packets in the case of
5 threads, etc.). In this result, we can see the required
packet queue size according to the number of packet
analysis threads, and select the best tradeoff between the
number of packet analysis threads and the amount of
packet queue when the amount of traffic on the network
has been expected.

120

3
8

2
8

2
3
w

NN G PR L e e

5

The number of remaining packets

1 [l 21 3t a 51 &f 7 81 91 o1
time (s)

Fig."9. The number of packets in the queue

5. Conclusion

We have described the development of a dynamic
RMON agent system whose functionality can be added
dynamically when needed. The RMON agent system was
designed to have a low processing overhead in order to be
used effectively on a large network that has a huge amount
of traffic. The packet capture module and the packet
analysis modules (the plug-in modules) are separated to be
executed in independent threads, and the number of packet
analysis modules can be conFig.d according to the amount
of traffic on the network in order to minimize the packet
loss due to the packet processing overhead. The plug-in
modules can also be added dynamically when the network
manager needs. To show the dynamic reconfiguration
capability of our RMON agent system, we have developed
and added a simple port scanning attack detection plug-in
module to the agent system. The performance evaluation
result of our RMON agent system demonstrates that is has

188 A Light-weight and Dyhamically Reconfigurable RMON Agent System

no packet loss and shows a low processing overhead (CPU
load less than 20 % on a 100 Mbps network with 70 %
network traffic load). The number of packets in the shared
packet queue was shown to decrease as the number of
packet analysis modules increases, and the number of
packets in the packet queue remains saturated to a certain
value, which shows the required packet queue size
according to the number of packet analysis modules.

We plan to extend our RMON agent system in order to
have the network intrusion detection capability by adding a
plug-in module that detects network intrusion and notifies
the event to the manager.

References

[1] W. Stallings, “SNMP, SNMPv2, SNMP v3, and
RMON 1 and 2,” Addison-Wesley, 1998.

(2] S. Waldbusser, Remote Monitoring Management
Information Base (RFC 1757), Feb. 1995.

[3] S. Waldbusser, Remote Monitoring Management
Information Base Version 2 (RFC 2021), Jan. 1997.

[4] The Simple Times, Agent Extensibility, Vol. 4, No 2,
Apr. 1996.

[5] Microsoft, http://msdn.microsoft.com/library/xml

[6] Microsoft, http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/iissdk/iis/isapiextensions.asp

[7] NetGroup, Politecnico di Torino, http://winpcap.
polito.it/default.htm

[8] Sys-Security Group, http://www.sys-security.com
/archive/papers/Network Scanning_Techniques.pdf

Jun-Hyung Lee

Jun-Hyung Lee received the M.S. degree in School of
Computer Engineering and Information Technology of
University of Ulsan, Korea in 2005. He is now working at
Initech in Korea. His research interest is in real-time
communications in industrial communication networks and
security in wireless networks.

Zin-Won Park

Zin-Won Park received the M.S. degree
in School of Computer Engineering and
Information Technology of University
of Ulsan, Korea in 2004. He is now
working at NetSecure Technology in
Korea. His research interest is in real-

\ time communications in industrial
communication networks and security in wireless networks.

Myung-Kyun Kim

Myung-Kyun Kim received the M.S.
and Ph.D. degrees in Department of
Computer Science in KAIST of Korea
in 1986 and 1996, respectively. From
1989 to 1998, he worked at Woosuk
University in Jeon-Ju, Korea. He is
now at School of Computer
Engineering and Information Technology of University of
Ulsan. He is interested in real-time communications in
industrial communication networks, real-time
communications on wireless networks, and security in
wireless networks.

