Abstract
Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Extraction of 3D building information from high resolution satellite imagery is one of the most active research topics. There have been many previous works to extract 3D information based on stereo analysis, including sensor modelling. Practically, it is not easy to obtain stereo high resolution satellite images. On single image performance, most studies applied the roof-bottom points or shadow length extracted manually to sensor models with DEM. It is not suitable to apply these algorithms for dense buildings. We aim to extract 3D building information from a single satellite image in a simple and practical way. To measure as many buildings as possible, in this paper, we suggested a new way to extract building height by triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and decrease the digitizing error and the computation efficiency.
IKONOS나 QuickBird와 같은 고해상도 위성영상이 상용화됨에 따라 위성영상으로부터 3차원 건물 정보를 취득하기 위한 많은 연구가 진행되고 있다. 3차원 건물 높이를 추출하는 연구는 크게 스테레오 영상 기반의 연구들과 단영상 기반의 연구들로 나눌 수 있는데 센서 모델링을 수반하는 스테레오 영상 기반의 연구들은 그 과정이 복잡하고, 실제 스테레오 영상을 취득하기 위해서는 별도의 주문과 비용이 소요되는 등의 어려움이 따른다. 기존의 단영상을 이용한 건물 높이 추출 연구들은 대부분 DEM 등의 부가적인 데이터를 필요로 하며, 건물의 그림자 길이나 건물 지붕점과 바닥점 관측을 통해 높이를 추출하였다. 이러한 기법들은 도시지역과 같이 건물이 밀집한 지역에서는 적용하기 부적합하다. 이에 이태윤(2006)의 연구에서는 가상의 그림자 투영 기법을 이용하여 건물의 그림자가 다른 인공체에 드리운 경우에도 건물 높이 추출이 가능한 기법이 제안된 바 있으나 이 기법은 건물의 그림자 끝이 식별되지 않는 건물에는 적용이 불가능하다. 이에 본 연구에서는 고해상도 위성 단영상에서 보다 많은 건물 높이의 관측이 가능하도록 하는 삼각 벡터구조 기반의 새로운 기법을 제안하였다. 제안된 기법은 센서모델링 과정이나 부가적인 데이터 없이 간단히 구현 가능하며 디지타이징 과정에서 발생하는 오차를 줄일 수 있다.