JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006(pp. 1700-1708)

Interprocedural Transformations for

Parallel Computing

Doo-Soon Park’, Min-Hyung Choi"

ABSTRACT

Since the most program execution time is consumed in a loop structure, extracting parallelism from
loop programs is critical for the faster program execution. In this paper, we proposed data dependency
removal method for a single loop. The data dependency removal method can be applied to uniform and
non-uniform data dependency distance in the single loop. Procedure calls parallelisms with only a single
loop structure or procedure call most of other methods are concerned with the uniform code within the
uniform data dependency distance. We also propose an algorithm, which can be applied to uniform,
non-uniform, and complex data dependency distance among the multiple procedures. We' compared: our

~method with conventional methods using CRAY~-T3E for the performance evaluation. The results show

that ‘the proposed algorithm is effective.

Keywords: Parallel Compiler, Parallel Computing, Interprocedural Transformation, Data Elimination

1. INTRODUCTION

There has been a move to parallel processing
systems in order to build the faster computers.
However, simply adding more processors is not
sufficient enough. Many researchers have been
suggested that new parallel programming environ-—
ments for parallel computers. These environments
analyze the dependency relationships of the varia-
bles being used in the program. When the source
code is sequential; the parallelizing compilers for
parallel computers detect the implicit parallelism
and translate the sequential programs into the par—
allel programs. Examples of such parallelizing
compilers are PARAFRASE II[1] from University
of Illinois, PTRAN from IBM, and SUIF from

. ¥ Corresponding Author : Doo-Soon Park, Address:
(336-745) Sinchang-Myun, Asan-Si, Choongchungnam-Do,
Korea, TEL : +82-41-530-1317, FAX : +82-41-530-1548,
E-mail : parkds@sch.ac.kr
Receipt date : Aug. 9, 2006, Approval date : Oct. 16, 2006
* Division of Computer Science and Computer
Engineering, SoonChunHyang University

b Computer Science and Engineering, University of
Colorado at Denver
(E-mail : Min.Choi@cudenver.edu.

Stanford University, among many others.

The most fundamental and usable part of the
parallel compiler is the restructuring module, which
extracts parallelisms from sequential loops. This
method is fairly good for speeding up parallel proc—
essing system. We can classify existing loop
transformation methods[2,3] into two categories:
when the data dependency distance is uniform and
when it is non—uniform. The uniform data depend-
ency distance case includes interchanging[2], til-
ing[2], unimodular[4], selective cycle shrinking[5],
Hollander[5], and Chen&Wang[6] methods. The
non-uniform case includes DCH[7] and IDCHI8]
methods. All of these methods analyze the data de-
pendency, and divide them into pieces to schedule,
but they have a limitation to achieve better
performance. For this reason, we propose an algo-
rithm, which can efficiently remove data depend-
ency and be implemented in both uniform and
non—uniform fashion in the single loop.

We expanded a loop procedure call into multiple
loops. In uniform situations, there are many pro-
posed methods. Those are loop extraction[9], loop
embedding[10] and

procedure cloning[11].

Interprocedural Transformations for Parallel Computing 1701

However, no such a proposal has been made yet
for the non-uniform However, no such a proposal
has been made yet for the non-uniform situation
case.

Also a method of extracting parallelism from a
loop, which contains procedure calls, is proposed.
We applied the proposed data dependency removal
method to achieve the goal, and the method can
be implemented in both uniform and non-uniform
way. The proposed method is summarized in
Figure 1.

To show that data dependency removal method
is the most efficient in a one loop, we evaluated
the performance on the data dependency distance
for the case of uniform and non-uniform. The per-
formance analysis on using data dependency re-
moval method in the inter-procedure trans-
formation method on proposed algorithm are per—
formed using CRAY-T3E.

The rest of this paper is organized as follows:
the data dependency removal algorithm is de-
scribed in Section 2. We then propose an expanded
data dependency removal algorithm in Section 3.
Performance analysis is in Section 4, and con-

clusion in Section 5.

Transformation Method in a loop

Extracting parallelism in uniform code

Extracting paralle! codes in uniform
v and nonuniform codes at compile time

Expansi Data Dependency Elimination
to interptocedure| Method

Interprocedural Transformation Data Dependency
Method Elimination Method
Expansion
Extracting parallelism in uniform code J
“The prop p ! paralleli
extraction algorithm canfbe applied on the

distance of data ependerjcy are uniform code,
nonuniform code and gomplex code at compile
y time

Expanded Data Dependency
Elimination Method

Fig. 1. Extended data dependency removal method.

2. THE DATA DEPENDENCY
REMOVAL ALGORITHM

In this section, definitions and theorems for the
data dependency removal algorithm are presented.

2.1 Data Dependency

The data dependency can be divided in the form
of flow dependence, anti dependence, output
dependence. Between sentence Si and S;, in S; the
variable X is defined and S; uses X. In this situation
the flow dependence exists while S; runs before S;.
Two sentences S;, and S; define the same variable
and Si performs before S;, and the output depend-
ence exists. Sentence S; uses X and S; defines X.
If S; performs before S; then there exists anti
dependence. There are many approaches to analyze
the data depehdency and the easiest method of
them is the separability test. This method can be
implemented when only one common loop variable
exists between two sentences. And GCD test has
nothing to do with loop boundary and only sub-
ordinating equation tells whether there exist a
fixed solution or not. Power test, I test, A test can
be used for data dependency analysis. But these
methods can only be applied when the data de-
pendency distance is uniforms and cannot be used
for the non-uniform case.

According to the study on the added expression
in array variable and data dependency, only 13.65%
is uniform type and 86.35% is non-uniform. For
that reason,to perform parallel process more effi-
clently not only uniform type but also non—uniform
type loops must be implemented. If a loop consists
of only one added variable as in axit+b, cxi+d(a, b,
¢, d are fixed number and i is loop variable), and
then in added sequence if a=c then, dependency
distance is |[(axizb)-(cxi+d)|, and there exists an
uniform type. If a>c, a non—uniform type exists.
If data dependency distance is the uniform type,
there exists only one dependent distant. If it is a
non—uniform type, there can be many more de-

1702 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

pendent distances.

[Definition 1]

Dependence Matrix(DM) becomes an array for
calculating the data dependent distance by using
all of the added markers in nested loops to express
data dependency. All elements in DM are pairs and
the elements in pairs are expression of dependent
sentences in between. DM(k,1,m) means that the
number of nested loops is k, the initial value of de-
pendent array matrix count is 1, and m is the num-
ber of sentences in the loop.

If the number of nested loops is 2 and the num-

ber of sentences in loop is n, then the dependent
matrix 1s DM(2,1,n), and it consists of followings:

(12911)5 (Z19:915): (l'm-,y“,)
DM(2,1,n) = (@181): (@agean)o o (@000,)
(xnlfynl)’(znTyn?)'f”"'(wnn’ynn)

Every pair consists of xii=(aeui,bievy), vi=(Gie
wij, dijex;) with arbitrary i, j(1<i, j<n). This shows
that S; has a data dependency from S;. And when
it is 0, it shows there exist no data dependency at
all. But, » is used for constant s and t which can
be used at the same time in added number equation
sxi+t. Si has data dependency from S;, so it is ex—
pressed in the form of (gy,by) and becomes the first
solution of diophantine equation x;xJ+g’ =
wixQ+h. @((azeuibiovy), (Ciewi.diexy) stands
for the fixed dependent distance, and #((ajeui,bijo
vii), (gjewi,djexi)) is the upper bound on the mod-
ification of added numbers.

[Definition 2]

The product(©) of dependent matrix DM(m,n,p)
and DM(m,],p) on operand produces dependent ma—
trix DM(m,n+1,p).

Using predefined DM expression

(@) @0y (@, 0,) (@031 a9) (@101,)
[CTNS TR N CIPR N0 RETH E T T 5 [EIRTRD R CIN TS NETH €I
AL

(@, 1Yy >'(~Tnz7ynz)"">(37nn=ynn Tn1:Yn1)1(%21%’":)""'(znn’ynn)

[ABJ

C--D

(((au@“wbn@“n)=(511®1L’117d11®zlx)))
({eu@uy:by@vy) . (e @wy dy®xy,))
a1, DU by, vy, (ClnEBU 1w APz y,)

)
DU 01,8 ,,). (¢, By, dy, D y,))
)
)

(«
{(
((DUy by @), (6 B,y d By))
(@ ®uny, by B), (Cnl@unl 4, ®T,)))

|

((ann®urmf bnn®vmz)f (Cnneau‘nnfdnn@zmz))
((ann®unn7 bnn@’unn)‘r (Cnnﬂawnﬂ’dmz@znn))

Element 4= ((((an@“uvbu@"’n)f(cu@u’urdu@zu))))

((ay®uy: by®vy). (e @wpdy @z)
of the matrix is -for calculating .the data
dependency. Operator s in dependent ‘matrix
stands for one element consists of n elements, and
tells that each element 1s used for calculating the
date dependency. If ((ajeui,bievi),(ciowi, djexi))
shows S; is dependent on S;, and ((auets,bre
V), (cdewk, duexk)) shows Sj is dependent on Sk.
((a Bu, . b, B,)(c Gw,,d, D,))

iy 74 17y

((au@uu u@vu) (Ckl@wu u@xu))
—S;—Sx are dependent in the following order. The

Also, shows S;

transitive relationship between them is shown in

Lemma 1.

[Lemma 1]
One element in dependent matrix DM(m,2,p)

((a,;Bu, bEEv)(c@w &,))

- i Yij ij? 1]
that is ((((au@“w ugﬂ’u) (c“@w“ 69:1:“))

)) show
transitive dependent relationships whose path
length is 2, and it shows a transitive relationships
((a,@u, b, ®v,), (¢, @w, .4, ;e))))

i 7y

((a‘kl@ukl’bkl@vkl) (e Bwy, kz@zu))
(Bt by B) B)
3mn, Uma, Dmn, Vmn, Cmn, Wmn, Gmn, Xmn are
LCM(Least Common Multiple) of added number

variable ay, w;, by, vij, ¢ij, Wij, dij, Xii, aw, U, bx, Vi,

in

Ckl, Wk, dii, Xkl
(Proof)
(aouy,bievy),(cjews, dijexi)) shows S is de-

pendent on S;. ((aueu,buevw),(cueww,duexa))

Interprocedural Transformations for Parallel Computing 1703

shows dependency from S; to Sk. From Si through
S; and to Sk the path length is 2 and a transitive
dependent relationship can be derived from LCM.
ayj, Ui, bij, vij show first added number and its in-
creased first solution’s. In the same sense, from
S; to Sk, aw, Uk, bi, Via the dependent relationships
are showing added number and first solution cu,
wkl, du, Xk shows second added number and its
first solution. The transitive dependent relation-
ships Si—>S;—Sk are from ((Gmn®Umn,brn@Umn),(Cone
Winn, dmn@Xmn)). Initial increase amn and umn are from
initial increase amn and umn. Si to Sj is the first add-
ed numbers. The first increase is in v and S to
Sk amn=Umn=LCM(vij,ww) are fair.

Cmn = Wmn = LCM(xXi;,Wia)

bmn = Vi + bu(f bu = 0 then b = vig) - 1

dmn = X35 + d(Gf da = O then du

Vmn = LCM(x4, Vi)
LCM (xi,%u1)

1t

xk) -1

H

Xmn

The transitive relationship can be determined
through increased numbers. If one relation is in-
creased by 3 and another one is increased by 4,
the LCM of two increases is (3,4), (6,8), (9,12),---.

[Theorem 1]

The transitive dependent relationship can be de-
rived from LCM of two increased numbers dis-
appears in the finite number of counts.

(Proaf)

By lemma 1, transitive dependency relationship
can be calculated through the increment of depend-
ency relationships between two LCMs. Let be two
dependent relationships increase mi, mo, and m3 =
LCM(mi,m2). If ms is no bigger than loop added
number of final n, proceed with LCM recursively.
For that let the set of common multiplier’'s element
value be mi, mg, ms, *** , mk. Then this values are
fixed numbers and are bigger than 1. And finally
I<m<mp<mz<--<mk At the end, from the
count mi to my, let the number of count be k, and
let there exists k that always satisfies mk=n . If

and only if k=n, it must be performed in sequential
which means recursively n times. Finally, the data
dependency will disappear. If k>n, the dependency
will be eliminated with k-th count. The data de-
pendency can be derived from LCM and then can

be eliminated within limited numbers.

2.2 Data dependency removal algorithm

For loops regardless of whether the data de-
pendence distance is uniform or non-uniform, we
apply the parallelism extraction algorithm. In gen-
eral, the loop consists of fixed dependent distance
or variable dependent distance, as follows:

Syt aad+by, elJ+f) = -

Si ¢ alad+by, e+ = aa(clrdig, g Jthi) + -
Sietr ap1(@il+bis, e JHfi) = ailcd+d, giJ+h) + -

Se & @n(@nl+bn, e) = 8n1(Catftdes, @i Jthes) + -
ai(l<i<n) may be different for each i.

For arbitrary i(1<i<n) between S;i and Si., if
and only if there exists data dependency, perform
sentence S; first and then Si-1. Then sentence Sii's
value ax(i+1) must not be correct because of ai
But if we perform Si-1 again, the value ai-1 of sen-
tence Si:1 might be correct. In this situation, if we
perform sentence Si.1 again, the value ax(i+1) in
Si-1 would be correct. Finally, in order to remove
the data dependency totally, we must know the
length of path, that is, how many times the tran-
sitive relation is formed. These procedures are
shown in <algorithm 1>, <algorithm 2>, and
<algorithm 3>. In order to know what kind of data
dependency exists, we may perform <algorithm
3>, and the result will be transformed into parallel
codes.

<algorithm 1>
FOR all aj, cj <> 0
IF the number of computation = 1 THEN
IF uj and wyj = 1 THEN
DOALL k=1, m-b; +1

1704 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

DOALL I=1, n-dj +1
Si
ENDDOALL
ENDDOALL
ELSE
DOALL k=uj, m, uj
DOALL k=wj, n, wj
Si
ENDDOALL
ENDDOALL
ELSE IF the number of computation = 2 THEN
IF ug and wi = 1 THEN
DOALL k=by;, m
DOALL I=dx, n
S
ENDDOALL
ENDDOALL
ELSE
DOALL k=u'w, m, uwki
DOALL k=w'k1, n, Wki
S
ENDDOALL
ENDDOALL
ELSE IF the number of computation = 3 THEN
IF uw and wyy = 1 THEN
DOALL k=bx1 + bw - 1, m
DOALL 1=dx + dw - 1, n
Sv
ENDDOALL
ENDDOALL
ELSE
DOALL k=uww, m, Wy
DOALL k=u'w, n, w'yy
Sv
ENDDOALL
ENDDOALL

<algorithm 2>
1. IF path length is 2,
(a,® u,,b,®v,), (¢, ® w,,d, D x.,))
DM-= [((au D uu,buw ® vu), (co ® Wu,du @ xu))J

THEN
Ui =LCM (byvy;, auu)
i =LCM(dipxig, awia)
2. IF path length is 3,
((aijGBuij,bijEBvij),(cijGBwij,di].EBa:ij))
DM:[(), By, b By, (6 Wy diyByy)) }
((a,,®u,,.b, ®v,,), Bw,,.d,,Pz,,))

uy uv’ uy

THEN
u'w =LCM(brvu, auwluy)
w'w =LCM(duXu, Cuvlue)

<algorithm 3>
1. Make a DM of path length 1.

2. IF there are DMs with identical subscript
THEN change to other name.
3. For all i, j
IF (a@j up) > m or (g wy) > n
THEN change the element to 0
4. For all non-zero elements, apply <algorithm 1>.
5. IF bj > m or d; > n THEN change the element to 0.
6. IF all element =0 THEN goto 12
ELSE increase path length by 1.
7. IF there is identical elements
THEN remove all elements except one.
8. In DM, apply <algorithm 2> and look for data
dependency and mutate DM.
9. IF the selected LCM .value is bigger than that of
the final DO loop
THEN change that element to 0.
10. Apply <algorithm 1> to every non-zero element.
11. Goto 6
12. IF there is added number THEN apply <algorithm 1>.
13. Except for the mutated sentences, perform doall S
to every sentence.

3. EXTRACTION OF PARALLELISM
FROM THE LOOP WITH
PROCEDURE CALLS

In this chapter, we describe inter-procedure
transformation and the extraction of parallelism
from the loop with procedure calls using the data
dependency removal method.

3.1 Inter-Procedure Transformation

Among many transformation methods applied for
procedures, expanded inlining transformation meth-
od replaces every procedure calling sentences with
called procedure codes. Loop extraction trans-—
formation method, a loop of the called procedure
is replaced at the outer part of the caller's calling
point. In Loop embedding, the loop based which in-
cludes procedure calls is replaced at the called
procedure. In Procedure cloning, if a procedure is
called many times, we prepare an optimal copy of
the procedure, and let the callers called the copy[9,10].

3.2 Extraction of Parallelism from the Loop
with Procedure Calls

In order to extract the parallelism from the loop

i

Interprocedural Transformations for Parallel Computing 1705

with procedure calls, we used the data dependency
removal method. The method transforms proce-
dures used in the loop using inlining and then ap-
plies the data dependency removal algorithm.

<algorithm 4>

1. Draw procedure call multi-graph

2. Expand it into augmented call graph

3. Calculation of information between procedures

4. Dependency analysis

5. IF (one procedure is called and the caller related var-
iables are not changed)
THEN goto <algorithm 6>
ELSE goto <algorithm 7>

6. Insert the data dependency removal algorithm
<algorithm 5> and make parallel code

<algorithm 5>
1. Initialization
S is number of sentences, DMA, DMB, DMC are array.
sw= 0
2. Use GCD arithmetic function call for diophantine
method calculation, and derive pass=1 and S*S size
2 dimensional dependent matrix DMB.
IF (The index variable is same) THEN rename
Set loop index variables i, j. They are Nj, Ny, at best.
For all DMB matrix i,j
IF ((asu) > N1t (egwi) > No2)
THEN change that element to 0
IF sw== 0 THEN DMA = DMB, sw = 1
4. Using DMB matix on all nonzero element
Forall i, j
IF (uj & wy == 1) THEN uniform
ELSE IF (uy & wy '= 1) THEN non-uniform
ELSE complex type to doall S; change
5. IF the same element exists, remove all except one
6. IF all element = 0 THEN go to 8
ELSE
to increase pass matrix production S*Sp"ss*l,
derivesized dependent matrix
DMC = DMA * DMB
pass++
DMB = DMC
free DMC
ENDIF
7. Go to 3
8. Except changed sentences, change all sentences into
DOALL S; sentence.

w

<algorithm 6>
1. repeat{until all the procedure be optimized)
2. repeat(until the inter procedure be optimized)
3. apply inlining in a reverse topological order

<algorithm 7>
1. apply inlining in a reverse topological order
2. repeat{until all the procedure be optimized)

4. PERFORMANCE ANALYSIS

To show the proposed method is superior to the
conventional ones, we evaluated data distance us-
ing two of the most widely used sample codes[89]
for the uniform and non-uniform type code.

The performance analysis in Figure 2(a) for uni-
form code is compared with the data dependency
removal method and linear transformation methods
such as unimodular, selective cycle shrinking,
Hollander, and Chen&Wang.

Figure 3(a) shows the performance of unim-
odular, selective cycle shrinking, Hollander,
Chen&Wang and our new method when the dis—
tance is uniform. We performed the comparison on
CRAY-T3E machine with the fixed values of
N;=20, N2=100, and the number of processes is 4.
Unimodular method and cycle shrinking method
are similar in the performance because they divide
the blocks and process sequentially, and then cal-
culate the value of dependent distance. Hollander
method isthe worst method, because it processes
the white node and black node in serial form. The
best performance is achieved when the data de-
pendency removal method is processed until there
is no more data dependency. The number of paral-
lel code used is A=2Ni-4 in tiling, interchanging,
selective shrinking. A=(N2-4)/4 is used for skew-
ing, unimodular and Chen&Wang method. It is A
=(N1xN2)/2 in Hollander method. Finally, the data
dependency removal method takes place only A=2+
N/10 times.

DO I=3 N;
DO J=5 Ns
A,) = B(I-3, J-5)
B{,) = A(-2, J-4)
(a) uniform code

DOI=1 N
DOJ=1 N
AQ@#I+J+1, I+]+3)= -
= A(2*]+3, T+1)
(b) non-uniform code

Fig. 2. Example Code 1.

1706 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2006

PERFORMANCE

900000
800000
700000
600000 2
500000
400000 |
300000 =
200000
100000

Times

Unim Cycle Wang Holl New
Transformation M ethods

(a) uniform

PERFORMANCE

2500

2000 E

1500

Times

1000

500

DCH IDCH New
Transformation Methods

(b) non-uniform
Fig. 3. Performance results of Example code 1

Figure 3(b) shows the performance of DCH
method, IDCH method, and proposed method when
the distance is non-uniform. For the experimental
result measurement, we increased the number of
iterations from 50 to 500 and the number of proc-
esses is 4. With the DCH method, A = Ni/2. With
the IDCH method, A = NyXNo/Tw(Ts number of
tile). For the data dependency method A =
1+Min(Ni,N2)/4. This shows that the proposed
method is effective for both uniform and non-uni-
form code.

We expand a loop procedure call to multiple
loops. The comparison and analysis of data de-~
pendency removal method is performed on the
CRAY T3E system. We gradually increased the
number of processors to 2, 4, 8, 16, 32 and applied
data dependency distance method for uniform,
non—-uniform, and complex code. Using the exam-
ple in Figure 4, we compared loop extraction trans~
formation method, loop embedding transformation
method, and procedure cloning transformation
method.

The data dependency removal method for trans-

SUBROUTINE P SUBROUTINE P SUBROUTINE P

real a(n, n) real a(n, n) real aln, n)
integer i integer 1 integer 1
doi=110 doi=1 10 doi=1,10

call Q(a, 1) call Qla, i*3) call Qla, 1)

call Qa, i+1) call Qla, i*5) call Qla, i*5)
enddo enddo enddo
SUBROUTIN Q(f, i) SUBROUTIN Q(, i) SUBROUTIN Q(f, 1
real f(n, n) real fin, n) real f(n, n)
integer 1, integer i, j integer i,
doj=1, 100 doj =1, 100 doj =1, 100

fN=1E))+- f(i,j*5+):f(jyj*4) £G,5)=1G3)+ ...
endd enddo enddo

(a)uniform code (b)non-uniform code (c)complex code

Fig. 4. Example code II.

formation between procedures performs inline ex-
pansion to remove the data dependency until there
is no more parallel data dependency. The same
process 1s applied to loop extraction and loop em-
bedding, which can reduce the overhead in proce-
dure calls. Procedure cloning is divided into the se~
quential process part and parallel part, and it pro-
duces the best parallelism. For the case of
non-uniform and complex data dependency dis-
tance, parallelization is possible for the expanded
data dependency removal method only. Therefore,
we apply parallelization for data dependency meth-
od, and apply sequence for all other methods.
The summary of the performance analysis is in
Figure 5. The expanded data dependency removal
method in data dependent distance for uniform,
non—uniform, complex code are all becoming better
with more processors. In the situation where the
distance is uniform, the procedure cloning trans-—
formation method is better than loop embedding
and loop extraction method. For data dependent
distance in non-uniform and complex code, only
the data dependent removal method can be
parallelized. In that sense, this method is the best.

5. CONCLUSION

Most programs spend their execution time in the
loop structure. For this reason, there are many
on-going studies on transforming sequential pro-

grams into parallel programs. Most of the studies

Interprocedural Transformations for Paraliel Computing 1707

PERFORMANCE

900E-05
800E-05
700E-05
600E-05
500E-05
400E-05
300E-05
200E-05
100E-05
0 00E+00

Time

proposed Embedding Extraction Clone
algorithm

Transformation Method

H2@84 06016 W32

(a) uniform code

PERFORMANCE

500E-04
400E-04
300E-04
200E-04
100E-04
0.00E+00

Time

proposed Embedding Extraction Clone

algorithm

Transformation Method

D2B406016832

(b) non-uniform code

PERFORMANCE

160E-04
140E-04
120E-04
100E-04 E
800E-05
600E-05
4 00E-05
200E-05
000E+00

Time

proposed Embedding Extraction Clone
algorithm

Transformation Method

@2@4 06016 W32

(c) complex code
Fig. 5. Performance of Example code il

are focused on extracting the parallelism, and then
transforming it into inter-procedural parallelism.
However, these methods can only be applied to
uniform code. This paper proposed an algorithm
that is applicable for both uniform and non-uniform
dependency distance code. To prove this, we used
an applicable data dependent removal method for
a single loop. The experimental result shows that
the execution time of our proposed method is supe-
rior to other methods. We also applied this method
to the inter-procedure algorithm and showed that

our method is significantly efficient as well.

Since the proposed method requires some times
for analysis, we will try to reduce the analysis time
as a future work.

6. REFERENCE

{1] Allen, F., M. Burke, P. Charles, R. Cytron, and
J. Ferrante, “An Overview of the PTRAN
analysis System for Multiprocessing,” Journal
of Farallel and Distributed Computing, Vol.
5, No. 5, 1998.

[2] Wolfe, M. J., “High Performance compiler for
Parallel Computing,” Oregon Graduate
Institute of Science & Technology, 1996.

[3] Zhang, W., G. Chen, M. Kandemir, and M.
Karakoy, “Interprocedural Optimizations for
Improving Data Cache Performance of
Array-Intensive Embedded Applications,”
DAC 2003, Anaheim, California, 2003.

[4] Banerjee, U, Loop Transformations for
Restructuring Compilers : The Foundations,
Kluwer Academic Publishers, 1993.

[5] D’'Hollander, E. H., “Partitioning and Labeling
of Loops by Unimodular Transformations,”
IEEE Trans. on Parallel and Distributed
Systems, Vol. 3, No. 4, July 1992.

[6] Chen, Y-S and S-D Wang, “A Parallelizing
Compilation Approach to Maximizing
Parallelism within Uniform Dependence Nested
Loops,” Dept. of Electrical Engineering,
National Taiwan University, 1993.

[7]1 Tzen, T. H and L. M. Ni, “Dependence
Uniformization A Loop Parallelization
Technique,” IEEE Transactions on Parallel
and Distributed Systems, May 1993.

[8] PunyamurtulaS, and V. Chaudhary, Compile-
Time Partitioning of Nested Loop Iteration
Spaces with Non-uniform Dependences, In
Journal of Parallel Algorithm and Architecture,
1996.

[9] Hall, M. W., K. Kennedy, and K. S. Mckinley.

1708 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

Interprocedural Transformations for Parallei
Code Generation, Technical Report 1149-s,
Dept. of Computer Science, Rice University,
1991.

[10] Hall, M. W., “Managing Interprocedural
Optimization, Ph.D thesis, Dept. of Computer
Science, Rice University, 1991.

[11] Mckintey, K. S., “A Compiler Optimization
Algorithm for Shared-Memory Multiprocessors,”
IEEE Transactions on Parallel and
Distributed Systems. 9(8): 769~787, August
1998.

“ Doo-Soon Park
1983 Computer Science, Chung~
nam National University
(M.S.)
1988 Computer Science, Korea

University(Ph. D.)
2004~2005 Visting Professor,

University of Colorado at

Denver

2002 ~2003 Dean, Engineering College, Soonchunhyang -

University
2000~ present Director, Korea Multimedia Society
2006 ~present Director, u—Healthcare Research Center,
Soonchunhyang University
1985~ present professor, Division of Computer Science

and Enginéering, Soonchunhyang

Research Areas : Parallel Processing, Data Mining, =~

mutimedia Information processing

Min-Hyung Choi

Min-Hyung Choi is the Director
of Computer Graphics and
Virtual Environments Laboratory
and an Associate Professor of
Computer Science Department
at Univ. of Colorado at Denver
and Health Sciences Center. He
received his M.S. and Ph.D. from University of Iowa
in 1996 and 1999 respectively. His research interests
are in Computer Graphics, Scientific Visualization and
Human Computer Interaction with an emphasis on
physically-based modeling and simulation for medical
and bioinformatics applications. Contact him at
min.choi@cudenver.edu.

