JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006(pp. 1617-1627)

Efficient Native Processing Modules for Interactive
DTV Middleware Based on the Small
Footprint Set-Top Box

Sang-Myeong Shin', Dong-Gi Im™, Min-Soo Jung’“rt

ABSTRACT

The concept of middleware for digital TV receivers is not new one. Using middleware for digital TV
development has a number of advantages. It makes it easier for manufacturers to hide differences in
the underlying hardware. It also offers a standard platform for application developers. Digital TV middle-

ware enables set-top boxes(STBs) to run video, audio, and applications. The main concern of digital
TV middleware is now to reduce its memory usage.because most STBs in the market are small footprint.
In this paper, we propose several ideas about how to reduce the required memory size on the runtime
area of DTV middleware using a new native process technology. Our proposed system has two compo-
nents; the Efficient Native Process Module, and Enhanced Native Interface APIs for concurrent native
modules. With our approach, the required memory reduced from 50% up to 75% compared with the tradi—
tional approach. It can be suitable for low end STBs of very low hardware limitation.

Keywords: Interactive DTV, DTV Middleware, Java Virtual Machine, Java Native Interface

1. INTRODUCTION

Millions of people watch DTV every day, and
this number is growing fast as more network oper-
ators and governments see the benefits of digital
broadcasting. In recent years, interactive digital
television has become the next big thing for the
broadcasting industry as broadcasters and network
operators seek new ways of making money and
keeping viewers watching. The development of ef-
ficient DTV middleware is essential for this
reason. Using middleware for interactive TV has

% Corresponding Author : Min-Su Jung, Address : (631-
701) 449 Wolyoung-dong, Masan, Kyungnam, S.Korea,
TEL : +82-55-242-7432, FAX : +82-55-248-2554, E-mail
' msjung @kyungnam.ac.kr
Receipt date : Nov. 1, 2006, Approval date : Dec. 20, 2006
' Dept. of Computer Engineering, Kyungnam University
" (E-mail : aegisddd@ky_ungr}am.ac.kr)))
Dept of Computer Engineering, Kyungnam University
(E-mail : toodulli@kyungnam.ac.kr)
Dept of Computer Engineering, Kyungnam University
% This work was supported by Kyungnam University
research fund, 2006.

i

a number of advantages. It makes it easier for
manufacturers to hide differences in the underlying
hardware, which in turn makes it easier for net-
work operators to buy receivers from more than
one vender. It also offers a standard platform for
application developers[1-4].

Java Virtual Machine is one of the layers in the
system software of STBs. The environment of
Ditital TV makes hard to perform Java virtual ma-
chine efficiently because of the limitation of STBs
hardware resource. It is necessary that we have
to improve performance and reduce memory re-
quirement of middleware working on the low-end
grade STBs[5-9].

The traditional Digital TV's set-top box needs
a hardware requirement such as 166MHz CPU,
8MB flash memory, and 16MB RAM to execute the
middleware system and applications based on
DVB-MHP. However, the common preference of
the STBs market is low hardware specification
than traditional one. Even though we create the
native modules that help to improve the speed of

1618 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

middleware system, the native module doesn’t
support concurrent execution so it will make all
middleware system can be slow([10-14].

For the some reason that we mentioned before,
we propose advanced technologies of the digital
TV middleware that can perform efficiently on
low-end grade STBs which have very low hard-
ware limitation; the Efficient Native Process
Module and enhanced java native module for the
concurrent native process.

This paper is organized as follows. Section 2 de-
scribes about DVB-MHP, STB as related works
in detail. Section 3 gives a design about how to
reduce memory requirement of DTV middleware
with the Efficient Native Process Module, the JNI
process APIs of concurrent native modules.
Section 4 gives the performance results. Finally,
we present the conclusion and the future work in

~

section 5.

2. A RELATED RESEARCH

2.1 DVB-MHP Systems

In the world of digital television, the most ob-
vious example to anyone using a digital TV set or
digital set-top box (STB) are the enhanced and in—
teractive TV applications now becoming available.
In the future, a major use of data broadcasting will
be as an enabler for interactive TV (TV) that will

also include links to the internet[15].

The DVB Project was founded in 1993 to estab-
lish a framework for the MPEG-2 based digital tel-
evision services. The DVB System provides an in-
termedium for delivering MPEG-2 Transport
Streams via a variety of transmission media. The
DVB Project released the MHP specification in
February 2000. The architecture of the MHP is de-
fined in terms of three layers: resources, system
software and applications. The MHP system layers
are presented in Fig. 1. MHP architecture defines
three layers consisting of resources, system soft-
ware and applications. MHP resources include
MPEG processing, Input/Output devices, CPU,
memory and graphics system. The system soft-
ware utilizes the underlying resources to provide
an abstract view of the platform to the applications.
Java language has been chosen for the develop-
ment of MHP applications, which are platform in-
dependent in nature. The system software mainly
consists of operating systems, JVM and software
package that provide necessary Application Pro-
gramming Interface (APIs) for the Digital TV ap-
plication development[16-19].

Although Fig. 1 only shows one possible way
APIs can be built on top of one another, it gives
us an idea of the dependencies among the various
components. The APIs that make up MHP and
OCAP can be split into two main parts. One part
contains the components related to MPEG and

MPEG streams. The other part provides services

Fig. 1. Overview of the components in an MHP software stack.

Efficient Native Processing Modules for interactive DTV Middieware Based on the Small Footprint Set-Top Box 1619

built directly on top of the standard APIs that are
a part of every Java platform. Important API for
handling MPEG is the section—filtering component,
used to filter packets from the MPEG stream.
Almost all of the other MPEG-related APIs build
on this in some way. The service information com—
ponent uses it to filter and parse the MPEG sec—
tions that contain the SI tables required to build
its SI database, which applications can then query
using the two available service information APIs.
The SI component could use a proprietary API for
a accessing the section filters it needs, but in some
designs it may be equally easy to use the stand-
ardized section-filtering API. So, we designed na-
tive module implementation to increase speed of
this part[20,21].

MHP defines three different profiles and each
one requires a certain minimum set of features.
The simplest profile, Enhanced Broadcasting, en-
ables downloading of Java applications with local
restricted interaction. The next profile, Interactive
Broad-casting, requires an interaction channe! and
presents the MHP-HTML applications, but as an
optional feature. The most advanced profile,
Internet Access, is intended for accessing Internet
services. By dividing the MHP standard into these
profiles the manufacturers can quickly provide cli-
ents with simple MHP receivers.

2.2 STB architecture

STB is the device used to receive the broadcasted
signal in the digital form and convert into the tele~
vision understandable form. The system software
of the MHP complaint STB contains a layer of JVM
on which Digital TV applications run.[16,17]

Table 1 shows the specification of set-top box

types in the STBs market.

Set—-top box is different from traditional desktop
PCs. Current and upcoming set-top box hardware
provides very limited storage capabilities and

resources.

3. THE DESIGN AND IMPLEMENTA-
TION

3.1 A typical native module between Java
thread and Native thread in the DTV mid-
dleware

The architecture of a typical DTV middleware
is composed of a thin native module and a thick
middleware stack. The management of the pro-
gram specific information table is important in the
middleware. The efficient management of the in-
formation causes good system performance. The
TS process module and SI DB are located in a mid-
dleware stack of the STB architecture. This mid-
dleware stack is implemented by Java language
and native language. Although the middleware is
simplistic and has portability, it has a problem in
its processing memory requirement. A virtual ma-
chine commonly needs to call various native func—.
tions to perform 1/O, access external resources, etc.
In a VM that uses non—native threads, the rest of
the VM is blocked when a native function is called.
There is only one physical thread of control. If the
native function does not return immediately, all the
other threads in the VM are blocked indefinitely
until the native function returns. In the worst case,
the entire system may deadlock. We need the en—
hanced java native interface for fast middleware.
Fig. 2 shows the algorithm of a traditional native

processing module in the middleware.

Table 1. Comparison of Set-top box types in the market

Division CPU ROM DRAM(Bit) Graphic

High End 150Mhz ~ 32M ~ 16M ~ 3D

Midrange 80~ 130Mhz 16M 8M MPEG chip with a built-in Graphic
Low End 50Mhz 8M AM MPEGE chip with a built-in Graphic

1620 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

Begin Application
3va thread
call

YES
Native threa
Call
YIS

Natlve Processing

get new value
from cache table

Exception handling
11 Blocking Native l

Return values
to this thread

Fig. 2. The algorithm of a traditional native proc-
essing module in DTV middleware.

Because native thread was blocked over this
mechanism, other Java threads can’t enter into na-
tive thread area. The processing time of the middle-
ware increases if errors or delays happen in the na-
tive thread. The solution of this problem is
essential. To overcome the above problem, tradi-
tional middleware must create another virtual ma-
chine that will execute native thread stand-alone.
The memory requirement will increase double.
Finally, java virtual machine will be allocated too
much memory on it. In addition, if the native thread
will not return any value to the original virtual ma-
chine, it can be possible, otherwise the native thread
has to know all information about the original vir—
tual machine to return values. Traditional middle-
ware however doesn’t support this kind of method.

3.2 Our concurrent native processing technol-
ogy between Java thread and Native thread

When an EPG, Xlet or applications are executed
on JVM, they need the information such as vid-
eo/audio, data and PSL The system software of the
MHP contains a layer of JVM on which Digital TV
applications run.

Since Digital TV applications are developed us-—
ing Java language, they are highly portable across
many STBs. JVM layer provides the luxury of

write once and run anywhere for the bytecode ob-
tained from the compilation of Java applications.
Portability and customization require the STB's
applications to be developed using Java program-
ming language. The major point of criticism with
regard to Java for DTV middleware is its small
footprint such as low memory and slow CPU.
Programs written in Java are translated into Java
Bytecode by a compiler. Even with a 32-bit pro—
cessor, the execution speed of Java Bytecode exe-
cuted by an interpreter is 10 to 20 times slower
than program code written in C. Therefore, we
have to use both the native method and Java
Bytecode for efficient middleware.

Service information is such a central part of the
middleware. It is important to many of the other
components in an MHP or OCAP receiver. Because
MHP and OCAP are both Java-based middleware
stacks, that may be a reason to lean toward a Java
implementation of the SI database. At the same
time, if the SI database is getting updated or queried
frequently it is better to use native code because
the underlying section filtering and basic table
parsing will also be carried out in the native code.

The main problem that has been observed is the
inefficient native thread access of the Java applica-
tions. Fig. 3 shows architecture of our DTV middle-
ware in the STB. It consists of thin middleware and
a high-speed native module. It guarantees rather fast
speed because the native module manages SI DB.

Our Approach l

Fig. 3. Our STB Architecture compared with tradi-
tional ones.

Efficient Native Processing Modules for interactive DTV Middleware Based on the Small Footprint Set-Top Box 1621

Fig. 4 shows the algorithm of our native proc-
essing module in the middleware. This module
manages java threads so that a process can call
native threads at the same time, and provides nec-
essary APIs. It stores current thread information
and reads data, data length and so on. If a native
process is over, this module refers to stored object
information and transmits the process results to
java thread. A concurrent native process is possi-

ble through this mechanism.

3.3 Design of Java native interface APIs for
concurrent native modules

When an object- is moved, only the object handle -

must be updated with the new location. All refer—
ences to the object in the executing program will
still refer to the updated handle, which did not
move. While this approach simplifies the job of
heap defragmentation, it adds a performance over-
head to every object access.

We designed some enhanced java native inter-
face APIs. These APIs manage the information of
threads with memory management modules, point—
ing to which native method has been called.

Core modules are as follow:

Beginapplication

ava threa
call

« JNI getCurrentThread @ It can get the
threads ID which called by native function,
and can be called by only native function and
wakeup function.

» JNI resume_Thread : Due to resume threads
which specified by unique thread ID, This func-
tion registers java thread ID to JVM Ready
queue. When the thread is executed by sched-
uler, and when wakeup function has been regis-
tered, the thread is executed after wakeup func-
tion run.

e JNI _suspendThread : It can suspend the
java thread using thread ID that you want to

~ stop it.

Fig. 5 shows Concurrent Native Process
Protocol of Digital Television System. First, java
application thread calls a native module and stops
the thread. Second, it calls an event handler and
adds events to different java threads. Third, native
module sends a return value to the event handler.
It takes out event and resumes previous thread.
Last, it calls wakeup function to resume threads.

3.4 Our efficient middleware technology

Digital TV not only provides high—definition and

YES

ative thred ND

get new value
from cache table

Call

YES

Commit
nsact
YES

Exception handling

Store values

Exception handling

YES

Return values
to this thread

Fig. 4. The algorithm of our native processing module in DTV middleware.

1622 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2006

Interp M
) 1 catanive,

Thread
Manager

2: petfomnecij

Network

Medla
Server

o o

& WOBBLOCK

3 ogeng 1

4 WOULDBLOCK

& suspergThreadl]

7 ymﬂ%mPIUCESS]Iwg 3

& reschieguiefl

- - -eE——— -~

& net_eyent cagoackld

13: AsyncEyemp}

l 12: handieNetworkasynctyentl;

¥

¥

¥

s |
125 ymfyeljﬁmcesslm h

1

{

{

H

1

i

I 13: IM_restmelnread)

-

Fig. 5. Concurrent native process protocol of digital television system.

multi-channels, but also provides application
programs. This kind of additional service can be
provided by broadcast networks including video
and audio which can be downloaded within set-top
box. Depending on the application program and
digital TV set-top box, it also can provide inter-
active services using return channels.

However, information that transported by
MPEG-2 TS is not suitable for all digital TV
set—top box. There being so many broadcasting
protocols, it is slow and difficult to work. To solve
those problems, we designed four modules to re-
duce the required memory size on the runtime area
of DTV middleware using a new native process
technology; Data Cache Manager, Packaging
Module, Monitoring Module, Retrieving Module.
All modules require a native processing module to
improve a processing speed and to reduce the re—
quired memory size. Transport Streams consist of
Media data, SI data, and Xlet data. Each type of
data has a PID which is already defined. And it
is inter-leaved together into a stream. Section
Filtering and SI DB must be executed quickly and
efficiently. This is the reason why we put the na—
tive module in between H/W and java middleware.

Data Cache Manager controls the information of
Java Middleware. It maps the raw data of TS
Reader module to Object types, which DVB/Java-
TV API requests. It also stores the created objects
for an amount of time, collect data request of other
components, and transmits data fitted for the
request. This process designed native module to
improve an execution speed as well.

Fig. 6 shows architecture of Section Data Cache
Manager. This module is made up of two parts:
Section Data Parser and Section Data Cache. Java

Fig. 6. The procedure of Raw data cache manager
process.

Efficient Native Processing Modules for Interactive DTV Middleware Based on the Small Footprint Set-Top Box 1623

thread uses all of the table information in the
Section cache. All of the tables in the Section
cache want to call native thread concurrently.
When any native thread runs, java virtual machine
however has a stop state. The concurrent process
module does apply to Data Queue and Raw
Section module.

In our algorithm, a native module always must
be used-typically for the efficient execution. The
situation can be better in case of the much more
expensive write operation. The performance in this
situation is better than that of independent of plat-
form in the DTV middleware. As mentioned earlier,
Java thread cost is more expensive than concurrent
process of native module. Fig. 7 and 8 describe
more detail about prcedure of TS reader module

and retrive process.

2. Laching

p—

Other Modile

1.‘?315‘1”

Fig. 7. The procedure of Transport Stream Reader
module.

etspit treaml)

OV Middiewars Dachs

{_iglnerxxxxamen

A " Reguest
Processing ™

Fig. 8. The procedure of retrieve process.

4. EVALUATION OF OUR APPROACH

Fig. 9 shows a evaluation board to test of our
new approaches. The CPU on the board is the
product running on Linux operating system devel-
oped out of Intel XScale IXP 425 400MHz and TI
DSP DM642 600MHz.

We examined our approaches with concurrent
native program and non-blocking program. We
tested our algorithms in terms of enhanced the total
memory requirement and the used memory. Fig.
10 shows the result of execution of concurrent na-
tive module.

The test-bed is divided to four tasks to reduce
the required memory size on the runtime area of
DTV middleware using a new native process tech-
nology; Data Cache Manager, Packaging Module,
Monitoring Module, and Retrieving Module. Media
Server transmits data to set-top box. HAL and
Native module deal with this data. And middleware

transmits data to java applications. It is composed

DATA

s e
bt + 11 o8t ua
ot s IO LA aa AT PR O5100 iew

pia o2 “\“g

- ' 38

Lac kot . papleadiindesicartfadisnios & falee 3

Foroys

-

i

-

et

SkMey © 6 sdtley 1 ¥ 5 picke tigh B on
5 i, seet
o o el

o it SkelD 3 7%

: it

Fig. 10. The window contains the execution of
concurrent native module.

1624 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

to several threads. Java applications request data
to a lot of threads of middleware.

Table 2 shows the comparison both the tradi-
tional native process and our new native process
in regard to memory usages.

We used the part of our digital television mid-
dleware for this evaluation. There are three
threads. They use transport stream information,
and a native thread to get transport stream
information. Native module must solve the error or
delay efficiently. We define three cases of transport
stream.

Table 3 shows the results that compare to the
total memory requirement. In this evaluation, we
compare a traditional approach and our new one,
checking the requirement of total memory on the
java virtual machine, when the number of tasks
is increasing.

As you can see the results in Table 3, the

amount of total memory requirement 1s started on

Table 2. The evaluation of an execution in a tradi-
tional native process and our one, the
part of our digital television middleware
for its evaluation

readerRun = new Thread(reader);

readerRun.start();)
parserRun=new Thread(SIParsingManager.getInstance());
parserRun.start();

requestRun = new
Thread(SIRetrievalManager.getInstance());
requestRun.start()

JNIEXPORT void JNICALL
Java_native_readPMT(JNIEnv *env, jobject nt){
syncByte = readByte();
if(ret = WOULDBLOCK){
dtlidx].readThread = JNI_getCurrentThread();
JNI_suspendThread();

}
}
readByte(}{

ret = transport_stream_read();
}

Table 3. The comparison of total memory require-

ment
Traditional | Qur approach gReda.lced Rate
1 Task | 4194 KB | 4194 KB |
2 Task | 8388 KB | 4,194 KB
3 Task | 12582 KB | 4,194 KB
4 Task | 16777 KB | 4,194 KB

the same value when the number of tasks is one.
During the number of tasks is increased 2 to 4, you
can find differences clearly. As we mentioned be-
fore, the total memory requirement of the tradi-
tional approach increases in a fan shape because
java virtual machine is created by each task,
whereas our approach is to create threads with one
java virtual machine for program execution.
Therefore, it doesn’t increase total memory re—
quirement and it maintains the amount of memory
allocation which allocated at first time. In the result
as follow, we can see the reduction of our new ap-
proach; the maximum memory reduction is up to
75% compared with two approaches.

Fig. 11 shows the comparison of total memory
requirement in a traditional native process and a
newly changed native module with enhance con-
current native process technology.

The total memory is a whole memory area allo—
cated on the java virtual machine. In Fig. 11, the
traditional approach is in totally different memory
allocation compared with our new approach be-
cause the traditional approach allots the same
number of tasks with the number of java virtual
machine

Another important data in this evaluation with
the total memory requirement is the used memory.
The used memory means the area of memory for
operation; a part of the total memory when the java
virtual machine executes tasks. The used memory
also can be increased or decreased at different
tasks. In this evaluation, we measured memory us-
age to go along with task increasing both the tradi-

tional approach and our one.

Efficient Native Processing Modules for Interactive DTV Middleware Based on the Small Footprint Set-Top Box 1625

Total Memory

Memory [MB}

Task

[= our approach 2 traditional |

Fig. 11. The chart shows the advantages of our
system about memory requirement.

Table 4 shows the real amount of memory use
when tasks are executed by java virtual machine.
In case of the traditional approach, the used memory
is increased up to 394% during the number of task
is growing. It explains that the individual memory
area is allocated for each task when a task is added.
Unlike the traditional approach, the used memory
of our new approach executing task on the java vir-
tual machine is increased up to 4Kbyte to go along
with task increasing. Even during all four tasks are
running, the used memory is increased 2% com-
pared with one task. This is very small size of
memory use compared with the traditional approach
executing four tasks, 4 times bigger than this.

Fig. 12 expresses Table 4 with a graph. If you
Fig out the inside of the box, you can easily under-
stand what the difference of between the traditional
approach and our new one to go along with task
increasing.

As you see, in Table 4 and Fig 12, the gap of
reduced rate between the traditional approach and
our approach is of from 49% up to 74%. This some
figures explain that the traditional approach has

been on the increase in the memory use because

Table 4. Comparison of used memory usage

Traditional [Our approach [Reéduced Raté
1 Task | 168404 Byte | 167,232 Byte | -+ §-

2 Tasks| 332,668 Byte | 168,320 Byte |-
3 Tasks| 497,332 Byte | 169,440 Byte| -
4 Tasks | 662,116 Byte | 170,752 Byte

Used Memory
800 -
= 600 e
> adl
S 400 e
E 200 _ 66% 74%
= 0 0% | -0 ,
1 2 3 a4
Task

[~ traditional = our approach |

F

g. 12. The chart shows the advantages of our
system about memory requirement.

each task has its own memory management sys-
tem including the system memory of java virtual
machine and all kinds of basic loaded classes. On
the other hand, our approach hasn’t been on the
big increase in the memory use. When the number
of tasks is increased, java virtual machine creates
thread instead of another virtual machine, so it
doesn’t have to allocate system memory for anoth-
er virtual machine, but it just needs to allocate
memory size of another thread.

According to the prior statements, it is very
clear to know that our approach reduces memory
use a lot. As we explain before, tasks can be exe-
cuted concurrently on only one java virtual ma-
chine process up to four tasks. According to the
result, we can reduce much smaller amount of the
used memory than traditional approach that each
task has its own virtual machine. In order to use
the new approach, we have to set up the concurrent
environment, the traditional approach doesn’t sup-
port it.

In addition, a part of the real memory use by
the total memory requirement, the traditional ap-
proach reported rates of 39.5% in memory use, but
our analysis from the result data reported rates of
4% in memory use by total memory requirement

that executes the same task as traditional one.

5. CONCLUSION

Java virtual machine (J2ME) technology is al-

1626 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

ready a standard for digital TV on embedded
devices. A Java language is basically slower than
other languages. The set-top box platforms also
have a heavy hardware limitation. In spite of
Java’'s slow speed, the reasons why Java virtual
machine technology is selected as a standard is
.platform independence. Therefore, DTV middle-
ware uses native module together for fast process
speeds. At this time, an enhanced native module
is necessary.

In this paper, we have proposed the method to
reduce the storage and resource of native thread
module. It used Java native interface with a con-
current native process module and an efficient Java
native interface module. It also makes the used
memory of native thread module in the DTV
middleware. Our approach to resource-constrained,
the required memory reduced from 50% up to 75%
compared with the traditional approach. It can be
suitable for low end STBs, very low hardware
limitation. In the future, this mechanism will con-
tribute greatly to the performance of DTV
middleware.

6. REFERENCES

[1] Edward M, Schwalb, Technologies and
Standards, ITV Handbook, Prentice Hall
PTR, July 2003.

[2] ETSI EN 301 192 vl4.1, Digital Video
Broadcasting (DVB); DVB specification for
Data Broadcasting, ETSI, Nov. 2004.

[3] ETSI TS 102 812 v1.1.1, Digital Video Broad-
casting (DVB); Multimedia Home Platform
(MHP) Specification 1.1, ETSI, Nov. 2001.

[4] Steven Morris, Anthony Smith-Chaigneau.
Interactive TV Standards, Focal Press, 2005.

[5] Connected Device configuration and Founda-
tion Profile, Version 1.0.1 Java 2 Platform,
Micro Edition. Porting Guide, 2002.

[6] ETSI EN 300 468 V16.1: Digital Video
Broadcasting (DVB) - Specification for Service

Information (SI) in DVB systems, 2004.

[7]1 lain D. Craig, Virtual Machines, Springer,
2005.

[8] Java 2 Platform, Micro Edition (J2ME tech-
nology) at hittp://java.sun.com/products/j2me

[9] Multimedia Home Platform (MHP) at http://
www.mhp.org

[10} Grzegorz Czajkowski, “Application isolation
in the Java Virtual Machine,” ACM Press, pp
354-366, 2000.

{11} Grzegorz Czajkowski, Laurent Daynes, and
Mario Wolczko, “Automated and Portable
Native Code Isolation,” Sun, 2001.

[12] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha, Java Language Specification, Sec-
ond Edition: The Java Series. Addison-
Wesley Longman Publishing Co., Inc., 2000.

[13] Lizy Kurian John, Lieven Eeckhout, Perfor-
mance Evaluation and Benchmarking. CRC,
2005,

[14] Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification (Znd Edition),
The Java Series, Addison-Wesley Pub Co,
1999.

[15] G.Sivaraman, P.Cesar, and P.Vuorimaa.

“System software for digital television appli-

cations,” In Proc. The IEEE Int. Conf on

Multimedia and Expo, ICME2001, pp.
784-787, Aug. 22-25 2001.

(16} ATSC data broadcast standard, ATSC
Standard A/90, 2000.

(17] Bill Venner, Inside the Java Virtual Machine.
The Java Masters Series, Computing McGraw~
Hill, 1998.

(18] ETSI TR 101 211 V1.6.1 : Digital Video
Broadcasting (DVB) - Guidelines on im-
plementation and usage of Service Informa-
tion (SI), 2004

[19] Program and system information protocol for
terrestrial broadcast and cable (Revision B),
ATSC Standard A/65B, 2003.

[20] R.Radhakrishnan, N. Vijaykrishnan, L.K.John,

Efficient Native Processing Modules for Interactive DTV Middleware Based on the Small Footprint Set-Top Box 1627

and A. Sivasubramaniam, “Architectural is—
sues in java runtime systems,” In Sixth
International Symposium on High-Perfor-
mance Computer Architecture, pp 387-398,
Jan. 08-12 2000.

[21] Transport stream file system, ATSC Standard
A/95, Feb. 2003.

Sang-Myeong Shin

He received B.S. degrees both in
Electronic Engineering and in
Computer Engineering from
Kyungnam University, S.
Korea, in 2005. He is currently
a ML.S, candidate in the Dept. of
Computer Engineering in 2007.
His research interests include home network, em-
bedded system management, java virtual machine and
RFID.

Dong-Gi im

He received the B.S. and M.S.
degree in Computer Engineering
from Kyungnam University in
2001 and 2003, respectively. and
the Ph.D. degree in Computer
4 ... Engineering from Kyungnam
University in 2007. He has been
working at Digital Homenet since 2001. He is currently
a chief researcher in the Digital Homenet. His research
interests include java virtual machine, radio frequency
identification and embedded System.

Min-Soo Jung

He received the B.S. degree in
computer engineering from Seoul
National University in 1986, and
the M.S. degree in computer
since from KAIST in 1988, and
the Ph.D. degree in computer
science from KIDST in 1994. He
has been working at Kyungnam University since 2000.
He is currently a professor in the division of computer
engineering. His research interests include java tech-
nology, home networking, mobile programming, and
USIM technology.

