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Replica Update Propagation Using Demand-Based Tree
for Weak Consistency in the Grid Database
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ABSTRACT

In the Grid Database, some replicas will have more requests from the clients than others. A fast con-
sistency algorithm has been presented to satisfy the high demand nodes in a shorter period of time.
But it has poor performance in multiple regions of high demand for forming the island of locally consistent
replicas. Then, a leader election method is proposed, whereas it needs much additional cost for periodic
leader election, information storage, and message passing. Also, false leader can be created. In this paper,
we propose a tree-based algorithm for replica update propagation. Leader replicas with high demand
are considered as the roots of trees which are interconnected. All the other replicas are sorted and consid-
ered as nodes of the trees. Once an update occurs at any replica, it need be transmitted to the leader
replicas first. Every node that receives the update propagates it to its children in the tree. The update
propagation i1s optimized by cost reduction for fixed propagation schedule. And it is also flexible for the
dynamic model in which the demand conditions change with time.
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1. INTRODUCTION

Grid computing is an important new technology.
Database system is needed for managing the large
amounts of data on the grid. The Grid Database
is the outcome of intercombination of Grid and
Database technique. It becomes one of the most
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important resources to provide data management
service in the Grid environment.

Data Replication is a significant aspect in Grid
Database [1]. Every data can have many same rep-
licas stored in other nodes in Grid Database
environment. Replication can reduce the access de-
lay and the bandwidth consumption. And replica
consistency is one of the key issues in replica
application. Currently, there are two groups of up—
dating algorithms for replica consistency. One is
strong consistency, and another is weak consistency.

Strong consistency must ensure that all the rep—
licas are always in a consistent state. But it is very
impractical for Grid Database system. In contrast,
weak consistency is more practical, which provides
less reply time and higher availability. When an up-
date occurs on one replica, it will be propagated to
other nodes by some order. This approach tolerates
impermanent inconsistency among replicas. But af-
ter a certain period of time, the replicas should be
in a consistent state assuredly. Accordingly, weak
consistency should provide an efficient method for
update propagation [2,3].
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There are several update propagation methods to
implement replica weak consistency. One is demand
based method [4]. A demand-based algorithm for
fast update propagation of replicas has been
presented. But the stability of this algorithm is not
well even with leader election. And the additional
overhead for sending message is considerable.

In this paper, a tree-based algorithm for replica
update propagation is proposed. Leader replicas
with high demand are considered as the roots of
trees which are interconnected. All the other repli—
cas are sorted and considered as nodes of the trees.
Once an update occurs at any replica, it need be
transmitted to the leader replicas first. Every node
that receives the update propagates it to its chil-
dren in the tree. Our proposed method optimizes
the update propagation for weak consistency by
cost reduction for fixed propagation schedule. In
this paper, it can be seen that our algorithm per-
forms well not only in static model but also in dy-
namic model by performance evaluation.

The rest of this paper is organized as follows.
Section 2 gives a overview of previous work on rep—
lica update propagation. Section 3 presents our pro-
posed demand-based trees model and algorithms. In
section 4, we evaluate our method and describe the
results. And the last section is the brief conclusions
of this paper.

2. RELATED WORK

This chapter generalizes several existing re-
searches about replica consistency and stresses
describing the fast consistency algorithm.

2.1 Replica Consistency Service in Grid
Environment

Grid system provides supports for global busi-
ness, government, research, science and corpo-
ration as a basic establishment of data and compu-
tation resources management. Replica consistency

service deals with keeping replicas up to date in

the grid system.

A Grid Consistency Service (GCS) is proposed
to synchronize replication update and maintain
consistency in Data Grid [5]. And the data con-
sistency is partitioned to several levels to adapt
different requirements. In some levels, not all the
replicas are always up to date. Various required
locks over grid can be used to achieve different
replica consistency.

Andrea Domenici generalized the emphases in
replica consistency and presented how to design
the replica consistency service in [6]. The compo-
nent of the consistency service is described briefly.
Then, he proposed a relaxed data consistency with
a replica consistency service called CONStanza in
Data Grid [7]. This method updates replicas asyn-
chronously by way of changing the frequency of
checking database modifications. It can satisfy da-
tabase replication as well as file replication. It can

keep the remote replicas lazy consistency.

2.2 The Fast Consistency Algorithm

Update propagation is an important part for rep-
lica consistency service. To satisfy more requests
from clients with up-to-date data, the demand
based approach should be taken into account.

Elias proposes a “Fast Consistency” algorithm
which prioritizes the replicas by the demand in the
distributed system [4]. This algorithm is that all
the servers select the neighbor with the most de-
mand to start a consistency session. If the neighbor
has another neighbor with greater demand, the
process will be repeated. This process continues
until all the replicas are updated. This algorithm
guarantees that most requests can be satisfied in
few sessions efficiently.

Then, Elias analyzes behavior of this algorithm
in a collection of replicas with multiple zones with
high demand [8]. From this research, we can see
that the fast consistency algorithm performs very
well in a collection of replicas with only one high
demand zone. However, in multiple zones of high
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demand, the performance becomes poor. The low
demand replicas can slow down the update prop-
agation as barriers.

In [9], Elias proposes a leader election algorithm
to avoid these barriers with low demand and gen-
eralizes this algorithm to Grid system. By this way,
it can be considered that all the zones with high
demand combine to form one high demand zone.
But this algorithm may choose false leader. And
an additional cost that the table of the IDs of leader
nodes needs to be dynamically reconstructed peri-
odically is considerable.

Furthermore, in the dynamic model, before any
update propagation process performs in a replica,
the chart with its neighbors’ data must to be
updated. That means, the replica need ask all its
neighbors before every update process by sending
messages. This problem also causes much addi-
tional overhead.

3. REPLICA UPDATE PROPAGATION
USING DEMAND-BASED TREE

In this chapter, we introduce a demand-based
tree structure for update propagation. The prop-
agation algorithm and dynamic algorithm are pre-
sented also.

3.1 Demand-Based Tree Structure

In the grid database system, we choose some
replicas with high demand value as leader nodes.
Every leader node can be considered as the root
of a tree. Other replicas are sorted by finding the
nearest leader node. Each set of these replicas
aligns by the sequence of descent demand value.
Based on this sequence, these replicas can compose
a tree. The leader nodes are interconnected by a
bidirectional pointer by the sequence of descent de—
mand value.

We consider a node as a candidate leader node
when its demand is more than all its neighbors.
Then, we define the average demand of a node d/n

as a threshold, where d is the total demand of the
network and n is the amount of replica nodes in
the network. The candidates whose demand value
is more than the threshold are chosen as leader no-
des, others are abandoned. Fig. 1 shows an exam-
ple of the leader choosing method.

All the other replicas are sorted by finding the
nearest leader node. (See Fig. 2)

Each set of nodes including a leader node queues
by the sequence of descent demand value. So, ev—
ery node has a serial number as 0, 1, 2, 3:-by the
sequence. Obviously, the serial number of leader
node is 0. Fig. 3 shows an example for the dis—
tribution of replica nodes.

The first set of nodes queue as the sequence for
example in Fig. 4. Other nodes queue as the same.

Each set of nodes can compose a tree in which
every node whose serial number is i. Every node
has the

cxi+l,cxi+2,---,cxi+c, where ¢ is the upper limit

children whose serial number is
amount of children of a node in the trees. And ev-
ery replica knows the information of its leader
node, parent and children. The data structure is

shown in Fig. 5(a).

Demaad; Leaders

Threshold;

Distance

Demand

Threshold

Distance

Fig. 2. Sortation of replicas.
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Fig. 3. An example of distribution of replica nodes.
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Fig. 4. A set of nodes queue by the sequence of descent demand value
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Fig. 5. (a) Data structure for tree-based structure. (b) The data for node at.

How to decide the upper limit amount of children
of a node in the trees? It lies on the amount of rep-
lica nodes in the network and the amount of leader
nodes. The amount of nodes in every tree may be
different. So, the height of every tree may be
different. We define the minimum integer value A,
which can satisfy:

as the average height of the trees. Here, [ is the
amount of leader nodes.

Based on the propagation algorithm, because we
need to satisfy all the requests to clients in less
time, the value ¢ + A needs to be minimal. If there
are several pairs of value <¢, h> satisfied this con-
dition, we choose the pair in which ¢ is minimal
for load balancing. Then, ¢ is an approximate opti-
mal value.

In our example, the value pair <2, 4> and <3,
3> have the minimal value for ¢+ 4. We choose
the pair <2, 4> as the solution. Fig. 5(b) shows
the data for node ai.

The leader nodes are interconnected by a bidirec-
tional pointer by the sequence of descent demand
value. So, the leader node also knows the information
of its neighbor leader nodes in the structure. The
data structure and the data for node a as an example
are shown in Fig. 6. The tree-based structure and
the example are shown in Fig. 7.

When an update occurs at a node, it will send
a message to its parent initially. It can ensure that

Forward Poilter | Backward Pointer Nulll b

(a) (b)

Fig. 6. (a) The data structure about neighbors of
a leader, (b) The data about neighbors of
node a.
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Fig. 7. The tree-based structure.

its parent won't propagate the update to itself.
Then, it will transmit the update to its leader node
first. The leader node, who has received the update,
transmits the update to its neighbor leader node
with greater demand by the forward pointer first.
Next, it transmits the update to another leader node
by the backward pointer. Afterward, it transmits
the update to its children by the sequence of de-
scent demand value. Every leader node transmits
the update to other nodes by this sequence. Every
non-leader nodes also transmits the update to its
children by the sequence of descent demand value.

Fig. 8 shows the update propagation in our ex-
ample when the update occurs in node bs.

In fact, the demand conditions do change with
time. Accordingly, the tree structure need do
change with time too. When the demand of a node
increases, it should compare with its parent. If its
demand is greater than its parent’s, their position
needs to be exchanged. Repeat this step, until its
demand is less than its parent’s. In our example,
we assume some nodes with their corresponding

0. a—
¢ ¢z b‘«——’//ﬂ; m/_/\:}z

Za
n’b3 -
e

N/b7 bs bm
ﬂ/
15

Fig. 8. The Example of the update propagation.
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demand as shown in Table 1. If the demand of node
ag increases to 19, it should compare with node ae
first. So, their position needs to be changed.
Secondly, it will compare with node ai. Their posi-
tion should be changed also. Thirdly, it will com-
pare with node a. Its demand value is less than
the demand of node a. Therefore, the result is
shown as Fig. 9(a).

When the demand of a node decreases, it should
compare with its children. If its demand is less than
any of its children’s, it will exchange the position
with its child with most demand. Repeat this step,
until its demand is greater than its children’s. In
our example, if the demand of node a2 falls from
17 to 9, it will compare with his child as that has
most demand among its children. So, it need
change the position with as. Next, it will compare
with node aii. Its demand is greater than the de-
mand of an. Consequently, the result is shown as
Fig. 9(b).

Table 1. The demand of replica nodes

Replica | al ai| az| as| as| as| as| a7| as| as|awlan| b

Demand | 20} 18| 17| 15| 14| 12| 11| 10| 8| 7| 5] 4|25
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(d

Fig. 9. The result of the dynamic algorithm used
in our example.
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If any leader node finds that its demand value Inout:
. A nput-
is more than anterior one or less than the posterior current_node: Current node ID
one, the position of these two trees need to be update_data: The update need to be propagated
changed. In our example, we assume the demand Variables: _
of node b falls from 25 to 19, and it's a leader node FP: Forward PomFer of current node
. . . BP: Backward Pointer of current node
still, the tree including node b needs change the child(i): the children of current node
position with the tree including node a. The result Begin
is shown in Fig. 9(c). 01: if current_node is a leader
When the demand of a node does change, its in- 02: if FP is not null
. . " 03: propagate update_data to FP
formation for its parent should be modified. In our 04: endif
example, if the demand of a4 increases to 16, the 05:  if BP is not null
data for node a1 is shown as Fig. 9(d). 06: propagate update_data to BP
07 endif
) . 08: for i < 1 to ¢ && child(;) is not null
3.2 Propagation Algorithm 09: propagate update_data to child(i)
Fig. 10 shows the update propagation algorithm 10 else
. . 11: send a message to parent
after updating a replica. 12: propagate update to parent
If the current node is a leader, and its forward 13:  for i < 1 to ¢ && child(i) is not null
pointer is not null, the update should be propagated 14: propagate update_data to child(i)
to the previous neighbor leader node (Line01~04) 15:d endif
. . en
(See Fig. 11(a)). And if its backward pointer is not
null, the update should be propagated to the follow- Fig. 10. The update propagation algorithm.

ing neighbor leader node (Line05~07) (See Fig.
11(b)). Then, it transmits the update to its children
one by one (Line08~09) (See Fig. 11(c)). If the
current node is not a leader node, it should send

the update to its children one by one (Linel2~15)
(See Fig. 11(D).

a message to its parent initially (Linel0~11) (See 3.3 Dynamic Algorithm

Fig. 11(d)). Then, it propagates the update to its Fig. 12 describes the dynamic algorithm when
leader first (See Fig. 11(e)). Finally, it transmits the demand of a leader replica changes.

P R ™
c b a Ce be a c be a
< < by ha a o ¢ by ha a € G by bha &
— Update — Updae ——s Update
(a) (b) (c)

¢ b a ¢ b a ¢ b
C; ¢ b b 8 az Cy ¢ My b a; a C: b by ay a
P //‘}’\\b T TT T OPR N D T T teseen sesses
3 4

** £ £
S ~mt> Message e Update re /\ ——— Update
b; bg by by b by by by 4 gsbg by
/ /
bys bgs bys
(d) (e) (f)

Fig. 11. lllustration of the propagation algorithm.
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Input:

current_node: Current node ID

Variables:

FP: Forward Pointer of current node

BP: Backward Pointer of current node
current_demand: The current demand of current node
previous_demand: The previous demand of current node
1 first_child: The first child of current node that may
exchange the position with current node
exchange_child: The child of current node that may
exchange the position with current node
c_parent: The parent of current node

Begin

01: if current node is a leader

02: if current_demand > previous_demand

03: while FP is not null and crrent_demand is
more than the demand of FP

04: FP < ExchangeLeader (FP, current_node)

05: else

06: exchange_child < first_child

while current_demand is less than the demand
of exchange_child
exchange_child < Exchange (current_node
, exchange_child)

09: if exchange_child = first_child

10: while BP is not null and the demand of
first_child is less than the demand of BP

11: BP < ExchangelLeader (first_child, BP)

12: else

13: while BP is not null and current_demand
is less than the demand of BP

14 BP <« Exchangeleader (current_node,

BP)

15: endif

16: endif

17. endif

end

Fig. 12. The dynamic algorithm for leader node.

If the demand of a leader node increases and is
greater than the previous leader node, the position
of the two leader nodes with the trees should be
exchanged. This step should repeat until the de-
mand of current node is less than the previous one
(Line01 ~04) (See Fig. 13(a)). ExchangelLeader
function is used for exchanging the position of two
neighbor leaders. If the demand of a leader node
decreases and is less than any of its children, it
should exchange the position with its first child.
This step should repeat until the demand of current

c b a
N T PPN

S € by by 1 a
AAUAA A A

@_ The demand of a becomes
greater than b

C a
N e PN
< < a; a; by by
[,/\‘ /\ AN //\\//\\ ,/\
(a)
The demand of b
“*"-_-;/_'/b\\ becomestesstiaxnb T bi
by by by
AN N /N PN
(b)
c by a
/'\ /\\ /w\

< C b b a a;
NN N N NN

The dem and of current

lzader byislessthan a

c a by
TN P N
o () a. a b by
/\\ //\ N //\\ /\ ,f/\' “, ///\
(c)

Fig. 13. lllustration of the dynamic algorithm for
leader node.

node is more than all its children (Line05~08) (See
Fig. 13(b)). Exchange function can exchange the
position of two replicas with different height. Then,
compare the demand of the leader after previous
steps with the following leader node. If its demand
is less than the following one, their position should
be exchanged. This step should repeat until the de-
mand of the leader node is more than the following
one (Line09~17) (See Fig. 13(c)).

Fig. 14 is the presentation of the dynamic algo-
rithm when the demand of a non-leader replica
changes.

If the demand of a non-leader node increases,
it should exchange the position with its parent
(Line01~04). Contrarily, it should exchange the
position with its first child (Line05~09). These
steps also should be executed circularly until the
node is on the proper position.
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Input:

current_node: Current node ID

Variables:

current_demand: The current demand of current node

previous_demand: The previous demand of current node

c_parent: The parent of current node

c_child: The first child of current node

Begin

01: if current_node is not a leader

02: if current_demand > previous_demand

03: while current_demand is greater than the
demand of the demand of c_parent

04: c_parent < Exchange (c_parent, current_

node)

05: else

06: while current_demand is less than the de-
mand of the demand of c_child

07 - c¢_child < Exchange (current_nodet, c_child)

08: endif

09:  endif

end

Fig. 14. The dynamic algorithm for non-leader node.

4. Performance Evaluation

The evaluation environment and the comparison
between the fast consistency and the demand-
based tree are presented in this chapter.

4.1 Evaluation Environment

The Network Simulator (NS-2), which is an ob-
ject oriented simulator, is used to provide the sim-
ulation of the network [10]. In NS-2, the whole
simulation is driven by the discrete event.

BRITE [11] which is a universal topology gen-
eration tool is used to generate the topologies in
our simulations. This tool generates the topologies
randomly and it is inclusive, flexible, extensible
and efficient.

The fast consistency algorithm and the de-

Table 2. Evaluation Environment (ut: unit time)

mand-based tree algorithm are compared in the
dynamic model, which is more similar to the real
network. The simulations are implemented with
the replicas with the number from 10 to 210. Table
1 shows the evaluation environment for testing the

proposed method.

4.2 Evaluation Results

In the evaluation test, the demand of replicas
changes randomly.

Fig. 15 shows the comparison of time for com-—
plete consistency between the fast consistency
with leader and the demand-based tree method.
We can see that the network can achieve the con-
sistency state with less time by using the proposed
method than fast consistency method.

The reason is that the proposed method only ex-
change messages when the demand of any replica
changes. The message passing between two nodes
will not affect the update propagation process.
Whereas fast consistency need to send messages
before each update propagation carries out for up-
dating the chart with the data of its neighbors. So,
fast consistency method needs exchanging much

—
panaaniil

~—a&— Fast Consistency (FC) ~-#- FC with Leader %~ Demand-based Tree I

Time for Complete Consistency (ut)

o G e e e Ty R S
10 30 50 70 90 110 130 150 170 190 210
Number of Replicas

Fig. 15. Time for Complete Consistency.

Evaluation Element Data Range Evaluation Element Data Range
Simulation Time 5000 (ut) Transmission Time 2~4 (ut)
Number of Nodes 10~210 Update Processing Time 6~8 (ut)
Number of Clients 10~400
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] ~—#~ Fast Consistency (FC) -~#~ FC with Leader ~~9-~~ Demand-based Tree

Number of Overhead Messages

° 2
0 30 50 70 90 110 130 150 170 190 210

Number of Replicas

Fig. 16. Number of Overhead Messages.

more additional messages for communication be-
tween replicas than demand-based tree method,
even with leader election. For this reason, both the
time and the overhead of message passing in fast
consistency method are more than demand-based
tree method.

The comparison of the number of overhead
messages is shown in Fig. 16.

Except the foregoing words about the good per-
formance of our method, it is proved that the de-
mand-based tree approach will not choose false
leader from the evaluation. But fast consistency
with leader can choose false leaders. The reason
is that the votes for the election method can reach
to the replicas with low demand whose neighbors

have less demand.

5. CONCLUSION

In Grid Database, the data can be updated by
user at any time. So, replica consistency is an im-
portant issue obviously. The demand based ap-
- proach for replica update propagation is one of the
methods to maintain replica weak consistency.

In this paper, the demand-based tree for replica
update propagation method is proposed. The tree
construction is composed based on the demand of
replicas. Update on one replica can be propagated
to its parent, children and the leader by this
construction. Compared with fast consistency, the

proposed method can achieve the consistency state

with less time than the fast consistency method.
It will not select false leader. It requires just little
message passing. Furthermore, periodic leader
election is unnecessary. The dynamic algorithm
can ensure that the set of leader replicas keeps up
to date. Consequently, compared with fast con-
sistency, the overhead is reduced considerably
compared with fast consistency in our method. In
a word, the proposed method showed increased
performance than fast consistency.

This method is suitable for Grid Database. It can
also be used for various applications with large number
of nodes, such as distribution system, and so on.
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