The Physical and Chemical Properties and Cytotoxic Effects of Acer tegmentosum Maxim. Extracts

산겨릅나무 추출물의 이화학적 특성과 암세포 성장 억제 효과

  • Shin, In-Cheol (Gangwon Research Institute of Health and Environment) ;
  • Sa, Jae-Hoon (Gangwon Research Institute of Health and Environment) ;
  • Shim, Tae-Heum (Gangwon Research Institute of Health and Environment) ;
  • Lee, Jin-Ha (School of Biotechnology and Bioengineering Kangwon National University)
  • 신인철 (강원도보건환경연구원) ;
  • 사재훈 (강원도보건환경연구원) ;
  • 심태흠 (강원도보건환경연구원) ;
  • 이진하 (강원대학교 바이오산업공학부)
  • Published : 2006.12.31

Abstract

Food constituents analysis of Acer tegmentosum. Maxim.(Acer TM) stem was carried out according to AOAC method, and the antiradical activity on DPPH and cytotoxicity on human cell lines (AGS, HepG2, A549, MCF-7 and Chang) for the 80% ethylalcohol(EtOH) extracts of Acer TM stem were studied. The antiradical activity on DPPH radical of the ethylacetate(EtOAc) fraction of the bark showed a higher activity than that of $\alpha$-tocopherol, ascorbic acid and BHT. The inhibition activity of the 80% EtOH extracts from Acer TM stem on human cancer cell lines by SRB assay indicated a dose-dependent growth inhibition on most human carcinoma cells. The growth inhibition rate of each human cancer cell line showed 91.3% to AGS, 75.0% to A549, 74.1% to HepG2, and 70.2% to MCF-7 cells, respectively, when the 80% EtOH extract(1 mg/ml) of Acer TM stem was added.

우리나라 중부 이북 해발 500m 이상의 고산지대에서 주로 자생하는 산겨릅나무(Acer tegmentosum Maxim.)를 대상으로 식품학적인 성분 분석과 산겨릅나무 줄기의 EtOH추출물의 분획물을 제조하여 DPPH 유리기 대한 소거 기능, 그리고 사람 유래의 암세포들(위암세포(AGS), 간암세포(HepG2), 폐암세포(A549)와 유방암세포(MCF-7))에 대한 항암 효과를 조사하여 다음과 같은 결과를 얻었다. 1) 산겨릅나무 줄기 의 식품성분 함량은 탄수화물이 58.4%, 수분 27.5%, 조단백질 8.7%, 조지방 3.8%, 조회분 1.6%의 순으로 나타났고 무기질의 주요 무기성분은 K과 Ca이 302.4mg%와 116.0mg%로 가장 많이 함유되어 있고 Mg, Na, Mn, Fe, Zn, P, Cu의 함량이 각각 57.8, 24.8, 9.5, 4.4, 1.6, 0.8, 0.2 mg% 순으로 나타났다. 2) DPPH를 이용한 항산화 효능을 보기위하여 산겨릅나무 줄기의 수피부 및 줄기를 80% EtOH로 추출하고, 그 추출물들을 다시 n-hexane, chloroform, EtOAc, n-BuOH 및 aqueous층으로 분리하였다. 분획물들을 대상으로 DPPH 유리기의 소거능을 검증한 결과 전반적으로 줄기 보다는 수피부에서 높은 소거 효과를 나타냈으며 용매별로는 EtOAc>n-BuOH>aqueous>chloroform>n-hexane 순으로 활성을 보였다. 특히, EtOAc fr.($SC_{50}:2.8{\mu}g/ml$과 n-BuOH fr.($SC_{50}:3.2{\mu}g/ml$은 천연항산화제로 쓰이는 ascorbic acid($SC_{50}:4.5{\mu}g/ml$$\alpha$-tocopherol($SC_{50}:4.0{\mu}g/ml$ 및 합성 항산화제인 BHT($SC_{50}:6.5{\mu}g/ml$보다도 높은 소거능을 보였다. 3) 유리기의 소거 기능과 분획물들의 성분과의 상호 관계를 조사하기 위하여 각 분획물들의 흡광도를 조사한 결과, 페놀성계 화합물계의 특성을 보이는 280nm부근에서 강한 흡광도를 나타내어 DPPH에 의한 높은 항산화 효능이 페놀성계 성분과 관계가 깊은 것으로 사료되었다. 4) 산겨릅나무 줄기의 80% EtOH 추출물의 암 세포주들에 대한 성장 저해와 정상세포에 대한 세포 독성을 알아보기 위하여 인체기원 세포주인 간암세포(HepG2), 위암세포(AGS),폐암세포(A549), 유방암세포(MCF-7)와 정상 간세포(Chang)를 대상으로 추출농도 0.125, 0.25, 0.5, 1(mg/ml) 등 4단계로 나누어 실험하였으며 다음과 같은 결론을 얻었다. 위암세포의 경우 0.125mg/ml의 저농도에서 50% 이상, 0.5mg/ml에서는 90% 이상의 암세포 생육 억제효과를 보여주었다. 간암세포를 포함한 나머지 폐암세포와 유방암세포의 경우 모두 0.5mg/ml에서 50%이상의 세포 성장 억제 효과를 나타내었다.

Keywords

References

  1. Harman D. (1998) Free radical theory of ageing. Asia Pacific Heart J. 7, 169-177 https://doi.org/10.1016/S1328-0163(98)90023-9
  2. King, A. and Young, G. (1999) Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc. 99, 213-218 https://doi.org/10.1016/S0002-8223(99)00051-6
  3. Barja, G. (2005) Free radicals and aging. Trends Neurosciences. 27, 595-600 https://doi.org/10.1016/j.tins.2004.07.005
  4. Cha, J. Y., Kim, H. J., Kim, S. K., Lee, Y. J. and Cho, Y. S. (2000) Effects of Citrus Flavonoids on the Lipid Peroxidation Contents. Korean J. Postharvest Sci. Technol. 7, 211-217
  5. Yang, H. S., Im, K. S. and Choi, J. S. (1992) The Pharmacochemical study on the plant of Ixeris spp. 2. Flavonoids and free amino acid composition of Ixeris sonchifolia. J. Korean Soc. Food Nutr. 21, 296-301
  6. Chung, T. Y., Kim, M. A. and Daniel, J. (1996) Antioxidative Activity of Flavonoids Isolated from Jindalrae Flowers (Rhododendron mucronulatum Turcz.). Agric. Chem. Biotechnol. 39, 320-326
  7. Shin, K. H., Woo, W. S. and Lee, C. K. (1981) Sedative Action of Flavonoids and Saponin from the Seeds of Zizyphus vulgaris Var. spinosus Bunge. Kor. J. Pharmacogn. 12, 203-207
  8. Kim, J. S., Choi, Y. H., Seo, J. H., Lee, J. W., Kim, S. K., Choi, S. U., Kang, J. S., Kim, Y. K., Kim, S. H., Kim, Y. S., and Ryu, S. Y. (2004) Anti-proliferative activity of Naturally Occurring flavonoids on cultured human tumor cell lines. Kor. J. Pharmacogn. 35, 164-170
  9. Park H. J., Nam, J. H., Jung. H. J., Kim, W. B., Park, K. K., Chung, W. Y. and Choi, J. W. (2005) In vivo antinociceptive antiinflammatory and antioxidative effects of the leaf and stem bark of Kalopanax pictus in rats. Kor. J. Pharmacogn. 36, 318- 323
  10. Bang, M. H., Kim, D. H., Too, J. S., Lee, D. Y., Song, M. C., Yang, H. J., Jeong, T. S., Lee, K. T., Choi, M. S., Chung, H. G. and Baek, N. I. (2005), Development of biologically active compounds from edible plant sources XIV. Isolation and identification of flavonoids from the Aerial Parts of Sajabalssuk (Artemiisia herba). J. Korean Soc. Appl. Biol. Chem. 48, 418- 420
  11. Byun, K. S., Lee, Y. W., Jin, J., Lee, M. K., Lee, H. Y., Yu, C. Y. and Lee, J. H. (2005) Genotoxicity and cytotoxicity in human cancer and normal cell lines of the extracts of Rhododendron brachycarpum D. Don leaves. Korean J. Medicinal Corp Sci. 13, 199-205
  12. Jin, H. J., Lee, H. Y., Kim, J. D., Heo, M. Y. and Lee, J. H. (2005) Genotoxicity and mutagenicity of the extracts of Morus alba L. leaves and stem. in vitro assay. Korean J. Medicinal Corp Sci. 13, 217-225
  13. Hong, B. K., Kim, J. K., Kim, H., Lee, J. W., Yu, C. H. and Kim, M. J. (2006) Biological activity and bioactive composition of extracts from Acer tegmentosum. Proc. of Soc. Korean Med. Crop. Sci (Abstracts) 14, 632-633
  14. Hur, J. M., Yang, E. J., Choi, S. H. and Song, K. S. (2006) Isolation of Phenolic Glycosides from the stems of Acer tegmentosum Max. J. Korean Soc. Appl. Biol. Chem. 49, 149- 152
  15. Shin, I. C., Sa, J. H., Kim, T. W., Park, K. Y., Jeong, K. J., Lee, T. W., Han, K. S., m Shim, T. H. and Oh, H. S. (2005) The influenceable of plant extracts of inside Gangwon-do on AGS cell and Hep3B cell glowth control. Rep. Inst. Health & Environ. 16, 39-45
  16. Kim I. H. (1986) Shinyak, Insanga, Seoul, pp. 78-79
  17. Kim I. H. (1998) Shinyakchobon (Vol. 2), Insanga, Seoul, pp. 413
  18. Cuniff P. (ed) (1995) Official Methods of Analysis of AOAC International (16th ed). (Virginia, USA)
  19. Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. u. Technol. 28, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  20. Nikolai E. Polyakov, Tatyana V. Leshina, Tatyana A. Konovalova and Lowell D. Kispert (2001) Carotenoids as scavengers of free radicals in a fenton reaction: antioxidants or pro-oxidants? Free Radical Biology and Medicine 31, 398-404 https://doi.org/10.1016/S0891-5849(01)00598-6
  21. Papazisis, K. T., Geromichalos, G. D., Dimitriadis, K. A. and Kortsaris, A. H. (1997) Optimization of the sulforhidamine B colorimetric assay. J. Immunol. Methods 208, 151-158 https://doi.org/10.1016/S0022-1759(97)00137-3
  22. Yokozawa, T., Chen, C. P., Dong, E., Tanaka, T., Nonaka, G. I., and Nishioka, I. (1998) Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 56, 213-222 https://doi.org/10.1016/S0006-2952(98)00128-2
  23. Okawa, M., Kinjo, J., Nohara, T. and Ono, M. (2001) DPPH (1,1-Diphenyl-2-picryl -hydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharm. Bull. 24, 1202-1205 https://doi.org/10.1248/bpb.24.1202
  24. Bandoniene, D. and Murkovic, M. (2002) On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples. J. Agric. Food Chem. 50, 2482-2487 https://doi.org/10.1021/jf011475s
  25. Peschel W., Sanchez-Rabaneda F., Diekmann W., Plescher A., Irene Gartzia, I., Diego Jiménez, D., Lamuela-Raventos, R., Buxaderas, S. and Codina, C. (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry 97, 137-150 https://doi.org/10.1016/j.foodchem.2005.03.033
  26. Katalinic, V., Milos, M., Kulisic, T. and Jukic, M. (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry 94, 550-557 https://doi.org/10.1016/j.foodchem.2004.12.004
  27. Suffness M. and Douros, J. D. (1981) Discovery of antitumor agents from natural sources. Trends in Pharmacol Sci. 2, 307- 310 https://doi.org/10.1016/0165-6147(81)90349-7
  28. Bieber, L. W., Filho, A. A. Da S., Lima, R. M. O. C., Chiappeta, A. D. A., Nascimento, S. C. D. Ivone A. Mello, D. S. J. F. D. and Veith, H. J. (1986), Anticancer and antimicrobial glycosides from ipomoea bahiensis, Phytochemistry 25, 1077- 1081 https://doi.org/10.1016/S0031-9422(00)81557-5
  29. Powis, G. (1987) Metabolism and reactions of quinoid anticancer agents. Pharmacol & Therapeutics 35, 57-162 https://doi.org/10.1016/0163-7258(87)90105-7
  30. Lee, H. and Lin, J-Y. (1988) Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutation Res. 204, 229-234 https://doi.org/10.1016/0165-1218(88)90093-6
  31. O'Brien, P. J. (1991) Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interactions 80, 1-41 https://doi.org/10.1016/0009-2797(91)90029-7
  32. Lee, Y. J., Jin, Y. R., Lim, W. C., Ji, S. M., Choi, S. H., Jang, S. Y. and Lee, S. K. (2003) A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J. Steroid Biochem. & Mol. Biol. 84, 463-468 https://doi.org/10.1016/S0960-0760(03)00067-0
  33. Yun, T. K. (2003) Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutation Res. 523-524, 63-74
  34. Yun, T. K. (2001) Panax ginseng - a non-organ - specific cancer preventive? Lancet Oncol. 2, 49-55 https://doi.org/10.1016/S1470-2045(00)00196-0
  35. T. Kakizoe, T. (2000) Asian studies of cancer chemoprevention: latest clinical results. Eur. J. Cancer 36, 1303-1309 https://doi.org/10.1016/S0959-8049(00)00107-6
  36. Han, K. H., Fleming, P., Walker, K., Loper, M., Chilton, W. S., Mocek, U., Gordon, M. P. and Floss, H. G. (1994) Genetic transformation of mature Taxus: an approach to genetically control the in vitro production of the anticancer drug, taxol. Plant Sci. 95, 187-196 https://doi.org/10.1016/0168-9452(94)90092-2
  37. Wall, M. E. and Wani, M. C. (1996) Camptothecin and taxol: from discovery to clinic. J. Ethnopharmacol. 51, 239-254 https://doi.org/10.1016/0378-8741(95)01367-9
  38. John M. Pezzuto (1997) Plant-derived anticancer agents, Biochem. Pharmacol. 53, 121-133 https://doi.org/10.1016/S0006-2952(96)00654-5
  39. Park, J. H., Hyun, C. K. and Shin, H. K. (1998) Cytotoxicity of heat-treated Korean mistletoe. Cancer Lett. 126, 43-48 https://doi.org/10.1016/S0304-3835(97)00526-0
  40. Lee, S. J., Lee, M. K., Choi G. P., Yu C. Y., Roh S. K., Kim, J. D., Lee H. Y. and Lee, J. H. (2003) Growth enhancement and cytotoxicity of Korean mistletoe fractions on human cell lines. Korean J. Medicinal Crop Sci. 11, 62-70
  41. Lee, S. J., Lee, M. K., Choi G. P. P., Kim, N. Y., Roh S. K., Heo, M. Y., Kim, J. D., Lee H. Y. and Lee, J. H. (2003) Inhibitory effect of Korean mistletoe on the oxidative DNA damage. Korean J. Medicinal Crop Sci. 11, 89-96
  42. Seo, J. H., Choi, Y. H., Kim, J. S., Kim, S. K., Choi, S. U., Kim, Y. S., Kim, Y. K., Kim, S. H. and Ryu, S. Y. (2004) Active principles of the Methanol Extracts of Korean Mistletoe responsible for the inhibitory effect on the proliferation of human tumor cell lines. Koran J. Pharmacogn. 35, 134-138
  43. Choi, S. Y., Chung S. K., Kim, S. K., Yoo, Y. C., Lee, K. B.,Kim, J. B., Kim, J. Y. and Song, K. S. (2004) An Antioxidant homo-flavoyadorinin-B-from Korean mistletoe (Viscum album var. coloratum). J. Korean Soc. Appl. Biol. Chem. 47, 279-282
  44. Fremont, L. (2000) Biological effects of resveratrol. Life Sciences 66, 663-673 https://doi.org/10.1016/S0024-3205(99)00410-5
  45. Signorelli, P. and Ghidoni, R. (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J. Nutr. Biochem. 16, 449-466 https://doi.org/10.1016/j.jnutbio.2005.01.017
  46. Zunino, S. J. and Storms, D. H. (2006) Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett. 240, 123-134 https://doi.org/10.1016/j.canlet.2005.09.001
  47. Eybl, V., Kotyzova, D. and Koutensky, J. (2006) Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice. Toxicology 225, 150-156 https://doi.org/10.1016/j.tox.2006.05.011
  48. Ghosh, P., Besra, S. E., Tripathi, G., Mitra, S. and Vedasiromoni, J. R. (2006) Cytotoxic and apoptogenic effect of tea (Camellia sinensis var. assamica) root extract (TRE) and two of its steroidal saponins TS1 and TS2 on human leukemic cell lines K562 and U937 and on cells of CML and ALL patients. Leukemia Research 30, 459-468 https://doi.org/10.1016/j.leukres.2005.08.018
  49. Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Spiegelhalder, B. and Bartsch, H. (2000) The antioxidant/ anticancer potential of phenolic compounds isolated from olive oil. Eur. J. Cancer 36, 1235-1247 https://doi.org/10.1016/S0959-8049(00)00103-9
  50. Lee, M. K., Lee, H. Y., Lee, J. H., Oh, J. S., Choi G. P., Kim, J. H. and Kim, J. D. (2002) Anticancer effect of Sorbus commixtaHedl Extracts. Korean J. Medicinal Corp Sci. 10, 403-408
  51. Cai, Y-Z., Sun, M., Xing, J., Luo, Q. and Corke, H. (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences 78, 2872-2888 https://doi.org/10.1016/j.lfs.2005.11.004
  52. Morre, D. M. and Morre, D. J. (2006) Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions, Cancer Lett. 238, 202-209 https://doi.org/10.1016/j.canlet.2005.07.011
  53. Wu, L-C., Hsu, H-W., Chen, Y-C., Chiu, C-C., Lin, Y-I. and Ho, J-A. A. (2006) Antioxidant and antiproliferative activities of red pitaya. Food Chemistry 95, 319-327 https://doi.org/10.1016/j.foodchem.2005.01.002
  54. Azmi, A. S., Bhat, S. H., Hanif, S. and Hadi, S. M. (2006) Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. FEBS Letters 580, 533-538 https://doi.org/10.1016/j.febslet.2005.12.059
  55. Sean D. Cox, K. Chamila Jayasinghe and Julie L. Markham (2005) Antioxidant activity in Australian native sarsaparilla (Smilax glyciphylla), J. Ethnopharmacol. 101, 162-168 https://doi.org/10.1016/j.jep.2005.04.005