DOI QR코드

DOI QR Code

Bioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation

  • Helal, G.A. (Botany Department, Faculty of Science, Zagazig University)
  • Published : 2006.03.31

Abstract

Crude protein (CP) content of mechanically ground rice straw into small particles by an electric grinder and reducing value (RV) and soluble protein (SP) in the culture filtrate were lower than that of the chopped straw into $5{\sim}6\;cm$ lengths when both ground and chopped straws were fermented with Aspergillus ochraceus, A. terreus or Trichoderma koningii, at steady conditions. The reduction rate of RV, SP and CP was 22.2, 2.4, 7.3%; 9.1, 4.9, 8.5% or 0.0, 0.0, 3.6% for the three fungi, respectively. Chemical pretreatment of straw by soaking in $NH_{4}OH$ for a day caused significant increase in CP of the fermented straw than the other alkali and acidic pretreatments. Gamma irradiation pretreatment of dry and wet straw with water, specially at higher doses, 100, 200 or 500 kGy, caused significant increase in RV and SP as CP in the fermented straw by any of these fungi. Chemical-physical combination pretreatment of rice straw reduced the applied dose of gamma irradiation required for increasing fermentable ability of fungi from 500 kGy to 10 kGy with approximately the same results. Significant increases in RV and SP of fermented straw generally occurred as the dose of gamma irradiation for pretreated straw, which combined with $NH_{4}OH$, gradually rose. Whereas, the increase percentage in CP of fermented straw that was pretreated by $NH_{4}OH-10\;kGy$ was 12.4%, 15.4% or 8.6% for A. ochraceus, A. terreus or T. koningii, respectively.

Keywords

References

  1. Allen, M. B. 1953. Exp. in soil bacteriology. 1st ed. Burgess Publ. Co.
  2. Al-Masri, M. R. 1999. In vitro digestible energy of some agricultural residues, as influenced by gamma irradiation and sodium hydroxide. Appl. Radiat. Isot. 50: 295-301 https://doi.org/10.1016/S0969-8043(98)00013-X
  3. Al-Masri, M. R. and Guenther, K. D. 1999. Changes in digestibility and cell-wall constituents of some agricultural by-products due to gamma irradiation and urea treatments. Radiat. Phys. Chem. 55: 323-329 https://doi.org/10.1016/S0969-806X(98)00333-8
  4. Araujo, A. and D'Souza, J. 1986. Enzymatic saccharification of pretreated rice straw and biomass production. Biotechnol. Bioeng. 28: 1503-1509 https://doi.org/10.1002/bit.260281008
  5. Babitskaya, V. G. 1986. Mycelial fungi as producers of protein biomass of lignocellulosic substrates. Mikologiya, I, Fitopathologia 20: 377-385
  6. Banchorndhevakul, S. 2002. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk. Radiat Phys. Chem. 64: 417-422 https://doi.org/10.1016/S0969-806X(01)00678-8
  7. Bastawde, K. B. 1992. Cellulolytic enzymes of a thermotolerant Aspergillus terreus strain and their action on cellulosic substrates. World J. Microbiol. Biotechnol. 8: 353-368 https://doi.org/10.1007/BF01198746
  8. Brenner, W., Rugg, B. and Rogers, C. 1977. Radiation treatment of solid wastes. In: Radiation processing (See FSTA (1979) 11 5G 346). New York Univ., New York, 'USA. pp. 389401
  9. Chahal, D. S. 1982. Bioconversion of lignocelluloses into food and feed rich in protein. In: Advances in agricultural microbiology. Subba RAO, N. S. (ed). Oxford and IBH Pub. Co. New Delhi, pp. 551-584
  10. Chahal, D. S., Khan, S. M. and Maher, M. J. 1991. Production of mycelial biomass of oyster mushrooms on rice straw. Proceedings of the 13th International Congress on the Science and Cultivation of Edible Fungi. Dublin, Irish Republic 2: 709716
  11. Chaplin, M. F. and Kennedy, J. F. 1987. Carbohydrate analysis. IRL Press, Oxford and Washington
  12. Coronel, L. M., Mesina, O. G, Joson, L. M. and Sobrejuanite, E. E. 1991. Cellulase and xylanase production of Aspergillus fumigatus, a thermophilic fungus. Philippine J. Sci. 120: 283303
  13. Coverse, A. O., Ooshima, H., Burns, D. S., Greenboum, E. and Wyman, C. E. 1990. Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol. 24-25: 67-73
  14. Duncan, D. B. 1955. Multiple range and multiple (F) test. Biometrics 11: 1-42 https://doi.org/10.2307/3001478
  15. Dytham, C. 1999. Choosing and using statistics: A biologist's guide. Blackwell Science Ltd., London, UK. p. 147
  16. Han, Y. W. and Anderson, A. W. 1975. Semi-solid fermentation of rye grass straw. Appl. Microbiol. 27: 159-165
  17. Han, Y. W. and Callihan, C. D. 1974. Cellulose fermentation: Effect substrate pretreatment on microbial growth. Appl. Microbiol. 27: 159-165
  18. Han, Y. W., Dunlap, C. E. and Callihan, C. D. 1971. Single cell protein from cellulosic wastes. Food Technol. 25: 130-133
  19. Harper, S. H. T. and Lynch. J. M. 1985. Colonization and decomposition of straw by fungi. Trans. Br. Mycol. Soc. 85: 655-661 https://doi.org/10.1016/S0007-1536(85)80260-6
  20. Helal, G. A. 2005a. Bioconversion of straw into improved fodder: Fungal flora decomposing rice straw. Mycobiology 33: 150-157 https://doi.org/10.4489/MYCO.2005.33.3.150
  21. Helal, G. A. 2005b. Bioconversion of straw into improved fodder: Mycoprotein bioconversion and cellulolytic activity of rice straw decomposing fungi. Mycobiology 33: 90-96 https://doi.org/10.4489/MYCO.2005.33.2.090
  22. Hoda, G. E. M., Alian, A. M., Nagwa, M. E. S. and Fadel, M. A. 1990. Enzymatic hydrolysis of some cellulosic wastes for fodder yeast production l. Transformation of wastes to fermentable sugars. Annals Agric. Sci. Cairo 35: 143155
  23. Jackson, M. G. 1978. Treating straw for animal feeding, animal production and health. Paper No. 10 (FAO, Rome)
  24. Kirk, T. K., Higuchi, T. and Chang, H. M. (eds.) 1979. Lignin biodegradation: microbiology, chemistry, and potential applications. Vols. 1 and 2 CRC Press, Boca Raton, Florida
  25. Kirk, T. K., Yang, H. H. and Keyser, P. 1978. The chemistry and physiology of the fungal degradation of lignin. Developm. Industr. Microbiol. 19: 51-61
  26. Klyosov, A. A. and Sinitsyn, A. P. 1981. Enzymatic hydrolysis of cellulose. IV. Effect of major physico-chemical and structural features of the substrate. Bioorg. Khim. 7: 1801-1812
  27. Lowery, O. H., Resebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin-phenol reagent. J. Biol Chem. 193: 265-275
  28. Malek, M. A. 2001. Ligno-cellulose degradation in solid-state fermentation of irradiated rice straw by Pleurotus sajor-caju fungi. Bangladesh Veterinarian 18: 148-152
  29. Malek, M. A., Chowdhury, N. A., Matsuhashi, S., Hashimoto, S. and Kume, T. 1994. Radiation and fermentation treatment of cellulosic wastes. Mycoscience 35: 95-98 https://doi.org/10.1007/BF02268535
  30. Malek, M. A., Matsuhashi, S. and Kume, T. 1998. Chemical composition and digestibility of rice straw fermented by selected fungi. Int. J. Mushroom Sci. 2: 27-32
  31. Millet, M. A., Baker, A. J. and Sattar, L. D. 1976. Physical and chemical pretreatments for enhancing cellulose saccharification, Biotechnol. Bioeng. Symposium 6: 125-153
  32. Malek, M. A., Baker, A. J. and Sattar, L. D. 1978. The use of organic residues in rural communities. Biotechnol. Bioeng. 20: 107-113 https://doi.org/10.1002/bit.260200109
  33. Patel, M. M. and Bhatt, R. M. 1992. Optimization of the alkaline peroxide pretreatment for the delignification of rice straw and its applications. J. Chem. Technol. Biotechnol. 53: 253-263 https://doi.org/10.1002/jctb.280530306
  34. Peiris, P. S. and Silva, I. 1987. Hydrolysis of rice straw to fermentable sugars by Trichoderma enzymes. MIRCEN J. 3: 5765
  35. Prendergast, P., Booth, A. and Colleran, E. 1983. Protein enrichment of pretreated lignocellulosic materials by fungal fermentation. In Production and feeding of single cell protein, M. P. Ferranti and A. Fiechter (eds.), Publ. By : Appl. Sci., Barking, ESSEX (UK), pp. 96-100
  36. Rivers, D. B. and Emert, C. H. 1988. Factors affecting the enzymatic hydrolysis of bagasse and rice straw. Biol. wastes 26: 9095
  37. Rolz, C. and Humphrey, A. 1982. Microbial biomass from renewables: Review of alternatives. Adv. Biochem. Eng. 198: 1-53
  38. Singh, K., Sondhi, H. S. and Neelakantan, S. 1989. Bioconversion of wheat straw with cellulolytic moulds in submerged culture fermentation. Indian J. Ani. Nutrit. 6: 140-144
  39. Snedecor, G. W. and Cochran, W. G. 1982. Statistical methods. 6th edi. Blackwell Science Ltd., London, UK. p. 147
  40. Thanikachalam, A. and Rangarajan, M. 1992. Bioconversion of rice straw into protein rich feed. Madras Agric. J. 79: 138-141
  41. Tripathi, J. P. and Yadav, J. S. 1989. Selection of pre-treatment for an alkalophilic Coprinus fermentation of wheat straw in a two - stage process. Int. J. Ani. Sci. 4: 128-133
  42. Weichert, D. 1991. Nitrogen as a guide element in bioconversion of lignocellulosics. Mikrobiologicheskii, Zhurnal 53: 103111
  43. Xin, L. Z. and Kumakura, M. 1993. Effect of radiation pretreatment of enzymatic hydrolysis of rice straw with low concentrations of alkali solution. Bioresour. Technol. 43: 1317
  44. Youssef, B. M. and Aziz, N. H. 1999. Influence of gamma-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios 97: 171-183

Cited by

  1. Bioethanol Production from Rice Straw Enzymatically Saccharified by Fungal Isolates, Trichoderma viride F94 and Aspergillus terreus F98 vol.03, pp.02, 2014, https://doi.org/10.4236/soft.2014.32003