Method of Integrating Landsat-5 and Landsat-7 Data to Retrieve Sea Surface Temperature in Coastal Waters on the Basis of Local Empirical Algorithm

  • Xing, Qianguo (LED, South China Sea Institute of Oceanography, Chinese Academy of Science) ;
  • Chen, Chu-Qun (LED, South China Sea Institute of Oceanography, Chinese Academy of Science) ;
  • Shi, Ping (LED, South China Sea Institute of Oceanography, Chinese Academy of Science)
  • 발행 : 2006.06.30

초록

A useful radiance-converting method was developed to convert the Landsat-7 ETM+thermal-infrared (TIR) band's radiance ($L_{{\lambda},L7/ETM+}$) to that of Landsat-5 TM TIR ($L_{{\lambda},L5/TM+})$ as: $L_{{\lambda},L5/TM}=0.9699{\times}L_{{\lambda},L7/ETM+}+0.1074\;(R^2=1)$. In addition, based on the radiance-converting equation and the linear relation between digital number (DN) and at-satellite radiance, a DN-converting equation can be established to convert DN value of the TIR band between Landsat-5 and Landsat-7. Via this method, it is easy to integrate Landsat-5 and Landsat-7 TIR data to retrieve the sea surface temperature (SST) in coastal waters on the basis of local empirical algorithms in which the radiance or DN of Lansat-5 and 7 TIR band is usually the only input independent variable. The method was employed in a local empirical algorithm in Daya Bay, China, to detect the thermal pollution of cooling water discharge from the Daya Bay nuclear power station (DNPS). This work demonstrates that radiance conversion is an effective approach to integration of Landsat-5 and Landsat-7 data in the process of a SST retrieval which is based on local empirical algorithms.

키워드

참고문헌

  1. Ahn, Y., P. Shanmugam, J. Lee, and Y.Q. Kang. 2006. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Mar. Environ. Res., 61(2), 186-201 https://doi.org/10.1016/j.marenvres.2005.09.001
  2. Chander, G. and B. Markham. 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE T. Geosci. Remote Sens., 41(11), 2674-2677 https://doi.org/10.1109/TGRS.2003.818464
  3. Chen, C., P. Shi, and Q. Mao. 2003. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant. J. Environ. Sci. Heal. A, A38(8), 1659-1668
  4. Chen, X., Y.S. Li, Z. Liu, K. Yin, Z. Li, O.W. Wai, and B. King. 2004. Integration of multi-source data for water quality classification in the Pearl River estuary and its adjacent coastal waters of Hong Kong. Cont. Shelf Res., 24(16), 1827-1843 https://doi.org/10.1016/j.csr.2004.06.010
  5. Gibbons, D.E., G.E. Wukelic, J.P. Leighton, and M.J. Doyle. 1989. Application of Landsat thematic mapper data for coastal thermal plume analysis at Diablo Canyon. Photogramm. Eng. Rem. Sens., 55(6), 903-909
  6. Landsat Project Science Office. 2006. Landsat 7 Science Data User's Handbook. Available from WWW: [cited: 2006-02-26]
  7. Mustard, J.F., M.A. Carney, and A. Sen. 1999. The use of satellite data to quantify thermal effluent impacts. Estur. Coast. Shelf S., 49(4), 509-524 https://doi.org/10.1006/ecss.1999.0517
  8. Qin, Z, A. Karnieli, and P. Berliner. 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. Int. J. Remote Sens., 22(18), 3719-3746 https://doi.org/10.1080/01431160010006971
  9. Qu, M., Q. Xing, and W. Pan. 2006. The parameters of assessing Daya Bay water quality by remote sensing. Ecologic Sci. (In press) (In Chinese)
  10. Ritchie, J.C. and C.M. Cooper. 2001. Remote sensing techniques for determining water quality: Application to TMDLs. p. 367-374. In: TMDL Science Issues Conference, Water Environment Federation, Alexandria, VA
  11. Suga, Y., H. Ogawa, K. Ohno, and K. Yamada 2003. Detection of surface temperature from Landsat-7/ETM+. Adv. Space Res., 32(11), 2235-2240 https://doi.org/10.1016/S0273-1177(03)90548-5
  12. Schott, J.R. 1982. An application of heat capacity mapping mission data: thermal bar studies of Lake Ontario. J. Appl. Photogr. Eng., 8(3), 117-120
  13. Schott, J.R., J.A. Barsi, B.L. Nordgren, N.G. Raqueno, and D. de Alwis. 2001. Calibration of Landsat thermal data and application to water resource studies. Remote Sens. Environ., 78(1-2), 108-117 https://doi.org/10.1016/S0034-4257(01)00253-X
  14. Tang, D.L., D.R. Kester, Z. Wang, J. Lian, and H. Kawamura. 2003. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China. Remote Sens. Environ., 84(4), 506-515 https://doi.org/10.1016/S0034-4257(02)00149-9
  15. Thomas, A., D. Byrne, and R. Weatherbee. 2002. Coastal sea surface temperature variability from Landsat infrared data. Remote Sens. Environ., 81(2-3), 262-272 https://doi.org/10.1016/S0034-4257(02)00004-4
  16. Vogelmann, J.E., D. Helder, R. Morfitt, M.J. Choate, J.W. Merchant, and H. Bulley. 2001. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sens. Environ., 78(1-2), 55-70 https://doi.org/10.1016/S0034-4257(01)00249-8
  17. Weng, Q., D. Lu, and J. Schubring. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ., 89(4), 467-483 https://doi.org/10.1016/j.rse.2003.11.005
  18. Wilson, S. B. and J.M. Anderson. 1984. A thermal plume in the Tay Estuary detected by aerial thermography. Int. J. Remote Sens., 5(1), 247-249 https://doi.org/10.1080/01431168408948803
  19. Xing, Q., C. Chen, P. Shi, J. Yang, and S. Tang. 2006. Atmospheric correction of Landsat data for the retrieval of sea surface temperature in coastal waters. Acta Oceanologia Sinica, 25(3). (In press)
  20. Xu, G. 1989. The environment and resources in daya bay: part I the environment of daya bay waters. Anhui Science and Technology Press, Hefei, Anhui, China. 108 p. (In Chinese)
  21. Zeng, P., H. Chen, B. Ao, P. Ji, X. Wang, and Z. Ou. 2002. Transport of waste heat from a nuclear power plant into coastal water. Coast. Eng., 44(4), 301-319 https://doi.org/10.1016/S0378-3839(01)00039-4