DOI QR코드

DOI QR Code

STUDY OF PERIOD VARIATION OF THE ECLIPSING BINARY SYSTEM W DELPHINI

  • Hanna, Magdy A. (National Research Institute of Astronomy and Geophysics(NRIAG))
  • Published : 2006.12.31

Abstract

A period study of the semi-detached eclipsing binary system W Delphini based on the extensive series of minimum timings covering more than a century(109 years) indicates a cyclic(O-C) variation of the system. This variation can be explained as due either to (1) stellar magnetic activity cycles of the cool subgiant G5 secondary component of the binary with a subsurface magnetic field equals to 3 kG, or (2) a long-term orbital period increases with a rate of $1.68{\times}10^{-8}$ day/cycle caused by a mass transfer rate of $4.9{\times}10^{-8}M_{\odot}yr^{-1}$ from the less to more massive component modulated by a light time effect due to a hypothetical third body with period of $53.4{\pm}1.06$ years. The former explanation is more recommended than the later one since the obtained third body mass value($M_3=1.58\;M_{\odot}$) is quite large but it can not manifest itself observationally and also it cannot be a white dwarf. In the contrary, from the magnetic activity point of view, the obtained characteristics are in good consistent when applying Applegate(1992) mechanism. However, further precise photometric and CCD observations for minima timings with brightness determinations are needed to confirm the present solution.

Keywords

References

  1. Abt, H. A., 2005, Observed Orbital Eccentricities, ApJ, 629, 507-511 https://doi.org/10.1086/431207
  2. Agerer, F. & Todoran, I., 1992, W Delphini - Request for New Observations, IBVS, 3731
  3. Applegate, J. H. & Patterson, J., 1987, Magnetic activity, tides, and orbital period changes in close binaries, ApJ, 322, L99 https://doi.org/10.1086/185044
  4. Applegate , J. H., 1992, A mechanism for orbital period modulation in close binaries, ApJ, 385, 621 https://doi.org/10.1086/170967
  5. Baliunas, S. L., & Vaughan, A. H., 1985, Stellar activity cycles, ARA&A, 23, 379 https://doi.org/10.1146/annurev.aa.23.090185.002115
  6. Batten, A. H., 1973, Binary and multiple systems of stars (New York, Pergamon), p.97
  7. Batten, A. H., Fletcher, J. M., MacCarthy, D. G., 1989, Catalogue of the orbital elements of spectroscopic binary systems : 8 : 1989, DAO, 17
  8. Borkovits, T. & HegedÄus, T., 1996, On the invisible components of some eclipsing binaries, A&AS, 120, 63-75 https://doi.org/10.1051/aas:1996275
  9. Cisneros-Parra, J. U., 1970, Apsidal motion in close binaries with and without mass exchange, A&A, 8, 141-147
  10. Graff, K., 1930a, Atti Pont. Acc, Nuovi Lincei, 83, 104
  11. Graff, K., 1930b, B.Z., 12, 62
  12. Hanna, M. A., Mayer, P. & Hanna, Y., 1998, Circularization of Binary Orbits, Ap&SS, 262, 171-176 https://doi.org/10.1023/A:1001813302297
  13. Harmanec, P., 1988, Stellar masses and radii based on modern binary data, BAC, 39, 329
  14. Hegedus, T., 1988, An Updated List of Eclipsing Binaries Showing Apsidal Motion, BICDS 35, 15
  15. Hill, G., Hilditch, R. W., Younger, F. & Fisher, W. A., 1975, MK classifications of some Northern Hemisphere binary systems, Mem. R. Astron. Soc. 79, 101
  16. Horrocks, H. A., 1941, Variations in the periods of certain eclipsing binaries , MNRAS, 101, 237 https://doi.org/10.1093/mnras/101.4.237
  17. Kholopov, P. N., et al., 1985, GCVS, V. I., Moscow: 'Nauka'
  18. Kopal, Z. & Shapley, M. B., 1956, Jodrell Bank Annals, 1, 141
  19. Kreiner, J. M., Kim, Chung-Hwey, Nha, & II-Seong, 2001, An Atlas of O-C Diagrams of Eclipsing Binary Stars, Wydawnictvo Naukove AP, Krakow
  20. Kippenhahn, R. & Weigert, A., 1967, Entwicklung in engen Doppelsternsystemen I. Massenaustausch vor und nach Beendigung des zentralen Wasserstoff-Brennens, Z. Astrophys., 65, 251
  21. Kruszewski, A., 1966, An experimental four-colour photometry, Adv. Astron. Astrophys. 4, 233
  22. Kukarkin, B. V., et al., 1969, GCVS, Moscow: 'Nauka'
  23. Kukarkin, B. V., et al., 1974, GCVS, 2d supplement, Moscow: 'Nauka'
  24. Kuiper, G. P., 1941, On the Interpretation of beta Lyrae and Other Close Binaries, ApJ, 93, 133 https://doi.org/10.1086/144252
  25. Lanza, A. F., Rodonµo, M. and Rosner, R., 1998, Orbital period modulation and magnetic cycles in close binaries, MNRAS 296, 893 https://doi.org/10.1046/j.1365-8711.1998.01446.x
  26. Lanza, A. F.& Rodonµo, 1999, Orbital period modulation and quadrupole moment changes in magnetically active close binaries , A&A 349, 887
  27. Lucy, L. B. & Sweeney, M. A., 1971, Spectroscopic binaries with circular orbits, AJ, 76, 544 https://doi.org/10.1086/111159
  28. Mallama, A. D., 1980, New ephemerides for 120 eclipsing binary stars, ApJS, 44, 241-272 https://doi.org/10.1086/190693
  29. Matese, J.J. & Whitmire, D. P., 1983, Alternate period changes in close binary systems, A&A, 117, L7
  30. Mayer, P. & Hanna M.A., 1991, Eclipsing binaries with eccentric orbits, BAC, 42, 98-108
  31. Mezzetti, M., Cester, B., Giuricin, G. & Mardirossian, F., 1980, Revised Photometric Elements of 9 Sd-Systems, A&AS, 39, 273
  32. Plavec, M., 1959, Period changes of the eclipsing binary W Delphini, BAC, 10, 185
  33. Plavec, M., 1960, Apsidal motion in systems with subgiant components, BAC, 11, 148
  34. Plavec, M., 1968, Evolution of Close Binaries of Shorter Period and Moderate Mass, Adv. Astron. Astrophys. 6, 202
  35. Plavec, M. J. & Dobias, J. J., 1987, The moderately interacting Algol binary RS Cephei, AJ, 93, 440 https://doi.org/10.1086/114329
  36. Petrova, A. V. & Orlov, V. V., 1999, Apsidal Motion in Double Stars. I. Catalog, AJ, 117, 587-602 https://doi.org/10.1086/300671
  37. Pikering, E. C., 1896, The Algol Variable B.D.+ 17 degrees 4367, ApJ, 3, 200 https://doi.org/10.1086/140194
  38. Pikering, E. C., 1896, The algol variable +17 4367, W Delphini., ApJ, 4, 320 https://doi.org/10.1086/140287
  39. Piotrowski, S., 1934a, AcA, 2, 61
  40. Piotrowski, S., 1934b, AcA, 2, 77
  41. Rucinski, S. M., 1974, Binaries. II. A- and W-type Systems. The W UMa-type Systems as Contact, AcA, 24, 119
  42. Russell, H. N, 1912, Elements of the eclipsing variables W Delphini, W Ursae Majoris, and W Crucis, ApJ, 36, 133 https://doi.org/10.1086/141956
  43. Russell, H. N, Fowler, M. and Borton, M. C., 1917, Elements of the eclipsing variables W Delphini, W Ursae Majoris, and W Crucis, ApJ, 45, 306 https://doi.org/10.1086/142331
  44. Soderhjelm S., 1980, Geometry and dynamics of the Algol system, A&A, 89, 100
  45. Struve, O., 1946, The Radial Velocity of 27 Canis Majoris, ApJ, 104, 253 https://doi.org/10.1086/144853
  46. Svechnikov, M.A., 1986, Katalog Orbitalnikh Elementov
  47. Tsessewich, W.P., 1957, On the periods of twenty eclipsing variable stars, Peremennyje Zvezdy, 11, 403
  48. Walter, K., 1970, Lichtkurve und Dimensionsbestimmung des Bedeckungssystems W Delphini, Astron. Nachr. Bd., 292, 4
  49. Warner, B. W., 1988, Quasiperiodicity in cataclysmic variable stars caused by solar-type magnetic cycles, Nat 336, 129 https://doi.org/10.1038/336129a0
  50. Wood, B. D. & Forbes, J. E., 1963, Ephemerides of eclipsing stars, AJ, 68, 257 https://doi.org/10.1086/108949
  51. Zahn, J., 1977, Tidal friction in close binary stars, A&A, 57, 383