Specific Detection of DNA Using Quantum Dots and Magnetic Beads for Large Volume Samples

  • Kim, Yeon-Seok (College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Byoung-Chan (ADEMRC, Gwangju Institute of Science and Technology(GIST)) ;
  • Lee, Jin-Hyung (ADEMRC, Gwangju Institute of Science and Technology(GIST)) ;
  • Kim, Jung-Bae (Pacific Northwest National Laboratory) ;
  • Gu, Man-Bock (College of Life Sciences and Biotechnology, Korea University)
  • Published : 2006.10.30

Abstract

Here we present a sensitive DNA detection protocol using quantum dots (QDs) and magnetic beads (MBs) for large volume samples. In this study, QDs, conjugated with streptavidin, were used to produce fluorescent signals while magnetic beads (MBs) were used to isolate and concentrate the signals. The presence of target DNAs leads to the sandwich hybridization between the functionalized QDs, the target DNAs and the MBs. In fact, the QDs-MBs complex, which is bound using the target DNA, can be isolated and then concentrated. The binding of the QDs to the surface of the MBs was confirmed by confocal microscopy and Cd elemental analysis. It was found that the fluorescent intensity was proportional to concentration of the target DNA, while the presence of non-complementary DNA produced no significant fluorescent signal. In addition, the presence of low copies of target DNAs such as 0.5 pM in large volume samples up to 40mL was successfully detected by using a magnet-assisted concentration protocol which consequently results in the enhancement of the sensitivity more than 100-fold.

Keywords

References

  1. Taton, T. A., C. A. Mirkin, and R. L. Letsinger (2000) Scanometric DNA array detection with nanoparticle probes. Science 289: 1757-1760 https://doi.org/10.1126/science.289.5485.1757
  2. Wang, J., G. D. Liu, and A. Merkoci (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 125: 3214-3215 https://doi.org/10.1021/ja029668z
  3. Yoo, S. M., K. C. Keum, S. Y. Yoo, J. Y. Choi, K. H. Chang, N. C. Yoo, W. M. Yoo, J. M. Kim, D. Lee, and S. Y. Lee (2004) Development of DNA microarray for pathogen detection. Biotechnol. Bioprocess Eng. 9: 93-99 https://doi.org/10.1007/BF02932990
  4. Li, H. X. and L. Rothberg (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 101: 14036-14039
  5. Guedon, P., T. Livache, F. Martin, F. Lesbre, A. Roget, G. Bidan, and Y. Levy (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal. Chem. 72: 6003-6009 https://doi.org/10.1021/ac000122+
  6. Gerion, D., F. Q. Chen, B. Kannan, A. H. Fu, W. J. Parak, D. J. Chen, A. Majumdar, and A. P. Alivisatos (2003) Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75: 4766-4772 https://doi.org/10.1021/ac034482j
  7. Drummond, T. G., M. G. Hill, and J. K. Barton (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21: 1192-1199 https://doi.org/10.1038/nbt873
  8. Wang, J., D. K. Xu, A. N. Kawde, and R. Polsky (2001) Metal nanoparticle-based electrochemical stripping poten-tiometric detection of DNA hybridization. Anal. Chem. 73:5576-5581 https://doi.org/10.1021/ac0107148
  9. Wang, J. (2003) Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta 500: 247-257 https://doi.org/10.1016/S0003-2670(03)00725-6
  10. Park, J. W., H. S. Jung, H. Y. Lee, and T. Kawai (2005) Electrical recognition of label-free oligonucleotides upon streptavidin-modified electrode surfaces. Biotechnol. Bioprocess Eng. 10: 505-509 https://doi.org/10.1007/BF02932285
  11. Yoon, H. C. and H. S. Kim (2004) Bioelectrocatalyzed signal amplification for affinity interactions at chemically modified electrodes. Biotechnol. Bioprocess Eng. 9: 107-111 https://doi.org/10.1007/BF02932992
  12. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013-2016 https://doi.org/10.1126/science.281.5385.2013
  13. Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271: 933-937 https://doi.org/10.1126/science.271.5251.933
  14. Bailey, R. E. and S. M. Nie (2003) Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125: 7100-7106 https://doi.org/10.1021/ja035000o
  15. Li, Y. G., Y. T. H. Cu, and D. Luo (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23: 885-889 https://doi.org/10.1038/nbt1106
  16. Gao, X. H., W. C. W. Chan, and S. M. Nie (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7: 532-537 https://doi.org/10.1117/1.1506706
  17. Ho, Y. P., M. C. Kung, S. Yang, and T. H. Wang (2005) Multiplexed hybridization detection with multicolor colo-calization of quantum dot nanoprobes. Nano Lett. 5: 1693-1697 https://doi.org/10.1021/nl050888v
  18. Chan, W. C. W. and S. M. Nie (1998) Quantum dot bio-conjugates for ultrasensitive nonisotopic detection. Science 281:2016-2018 https://doi.org/10.1126/science.281.5385.2016
  19. Alivisatos, P. (2004) The use of nanocrystals in biological detection. Nat. Biotechnol. 22: 47-52 https://doi.org/10.1038/nbt927
  20. Michalet, X., F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538-544 https://doi.org/10.1126/science.1104274
  21. Pumera, M., M. T. Castaneda, M. I. Pividori, R. Eritja, A. Merkoci, and S. Alegret (2005) Magnetically trigged direct electrochemical detection of DNA hybridization using Au-67 quantum dot as electrical tracer. Langmuir 21: 9625-9629 https://doi.org/10.1021/la051917k
  22. Su, X. L. and Y. B. Li (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem. 76: 4806-4810 https://doi.org/10.1021/ac049442+
  23. Sun, X. L., W. X. Cui, C. Haller, and E. L. Chaikof (2004) Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. Chembiochem 5: 1593-1596 https://doi.org/10.1002/cbic.200400137
  24. Nam, J. M., C. S. Thaxton, and C. A. Mirkin (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301: 1884-1886 https://doi.org/10.1126/science.1088755
  25. Patolsky, F., Y. Weizmann, E. Katz, and I. Willner (2003) Magnetically amplified DNA assays (MADA): Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. Angew. Chem. Int. Ed. Engl. 42: 2372-2376 https://doi.org/10.1002/anie.200250379
  26. Yang, L. J. and Y. B. Li (2005) Quantum dots as fluorescent labels for quantitative detection of Salmonella typhi-murium in chicken carcass wash water. J. Food Protect. 68: 1241-1245 https://doi.org/10.4315/0362-028X-68.6.1241