Preparation Method for Escherichia coliS30 Extracts Completely Dependent upon tRNA Addition to Catalyze Cell-free Protein Synthesis

  • Ahn, Jin-Ho (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • Hwang, Mi-Yeon (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Oh, In-Seok (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Park, Kyung-Moon (Department of Chemical System Engineering, Hongik University) ;
  • Hahn, Geun-Hee (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Choi, Cha-Yong (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • Kim, Dong-Myung (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
  • 발행 : 2006.10.30

초록

A simple method for depleting E. coliS30 extracts of endogenous tRNA has been developed. An $ethanolamine-Sepharose^{(R)}$ column equilibrated with water selectively captured the tRNA molecules in E. coli S30 extracts. As a result, S30 extracts filtered through this column became completely dependent upon the addition of exogenous tRNA to mediate cell-free protein synthesis reactions. We anticipate that the procedures developed and described will be particularly useful for in vitro suppression reaction studies designed to introduce unnatural amino acids into protein molecules.

키워드

참고문헌

  1. Noren, C. J., S. J. Anthony-Cahill, M. C. Griffith, and P. G. Schultz (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244: 182-188 https://doi.org/10.1126/science.2649980
  2. Cook, S. N., W. E. Jack, X. Xiong, L. E. Danley, J. A. Ell-man, P. G. Schultz, and C. J. Noren (1995) Photochemi-cally initiated protein splicing. Angew. Chem. Int. Edit. 34: 1629-1630 https://doi.org/10.1002/anie.199516291
  3. Miller, J. C, S. K. Silverman, P. M. England, D. A. Dougherty, and H. A. Lester (1998) Flash decaging of tyrosine sidechains in an ion channel. Neuron 20: 619-624 https://doi.org/10.1016/S0896-6273(00)81001-6
  4. England, P. M., H. A. Lester, N. Davidson, and D. A. Dougherty (1997) Site-specific, photochemical proteolysis applied to ion channels in vivo. Proc. Natl. Acad. Sci. USA 94: 11025-11030
  5. Pollitt, S. K. and P. G. Schultz (1998) A photochemical switch for controlling protein-protein interactions. Angew. Chem. Int. Edit. 37: 2104-2107 https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2104::AID-ANIE2104>3.0.CO;2-Z
  6. Cohen, B. E., T. B. McAnaney, E. S. Park, Y. N. Jan, S. G. Boxer, and L. Y. Jan (2002) Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296: 1700-1703 https://doi.org/10.1126/science.1069346
  7. Steward, L. E., C. S. Collins, M. A. Gilmore, J. E. Carlson, J. B. A. Ross, and A. R. Chamberlin (1997) In vitro site-specific incorporation of fluorescent probes into beta-galactosidase. J. Am. Chem. Soc. 119: 6-11 https://doi.org/10.1021/ja963023f
  8. Turcatti, G., K. Nemeth, M. D. Edgerton, U. Meseth, F. Talabot, M. Peitsch, J. Knowles, H. Vogel, and A. Chollet (1996) Probing the structure and function of the tachykinin neurokinin-2 receptor through biosynthetic incorporation of fluorescent amino acids at specific sites. J. Biol. Chem. 271: 19991-19998 https://doi.org/10.1074/jbc.271.33.19991
  9. Taki, ML, T. Hohsaka, H. Murakami, K. Taira, and M. Sis-ido (2002) Position-specific incorporation of a fluoro-phore-quencher pair into a single streptavidin through orthogonal four-base codon/anticodon pairs. J. Am. Chem. Soc. 124: 14586-14590 https://doi.org/10.1021/ja017714+
  10. Cornish, V W., D. R. Benson, C. A. Altenbach, K. Hideg, W. L. Hubbell, and P. G. Schultz (1994) Site-specific incorporation of biophysical probes into proteins. Proc. Natl. Acad. Sci. USA 91: 2910-2914
  11. Cornish, V. W., K. M. Hahn, and P. G. Schultz (1996) Site-specific protein modification using a ketone handle. J. Am. Chem. Soc. 118: 8150-8151 https://doi.org/10.1021/ja961216x
  12. Wang, L., Z. W. Zhang, A. Brock, and P. G. Schultz (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100: 56-61
  13. Wang, L., A. Brock, B. Herberich, and P. G. Schultz (2001) Expanding the genetic code of Escherichia coli. Science 292: 498-500 https://doi.org/10.1126/science.1060077
  14. Chin, J. W, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. W. Zhang, and P. G. Schultz (2003) An expanded eu-karyotic genetic code. Science 301: 964-967 https://doi.org/10.1126/science.1084772
  15. Taira, H., T. Hohsaka, and M. Sisido (2006) In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Nucleic Acids Res. 34: 1653-1662 https://doi.org/10.1093/nar/gkl052
  16. Hohsaka, T., Y. Ashizuka, H. Murakami, and M. Sisido (2001) Five-base codons for incorporation of nonnatural amino acids into proteins. Nucleic Acids Res. 29: 3646-3651 https://doi.org/10.1093/nar/29.17.3646
  17. Kanda, T., K. Takai, T. Hohsaka, M. Sisido, and H. Ta-kaku (2000) Sense codon-dependent introduction of unnatural amino acids into multiple sites of a protein. Biochem. Biophys. Res. Commun. 270: 1136-1139 https://doi.org/10.1006/bbrc.2000.2556
  18. Hohsaka, T., Y. Ashizuka, H. Taira, H. Murakami, and M. Sisido (2001) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochemistry 40: 11060-11064 https://doi.org/10.1021/bi0108204
  19. Anderson, J. C., T. J. Magliery, and P. G. Schultz (2002) Exploring the limits of codon and anticodon size. Chem. Biol. 9: 237-244 https://doi.org/10.1016/S1074-5521(02)00094-7
  20. Anderson, J. C., N. Wu, S. W. Santoro, V. Lakshman, D. S. King, and P. G. Schultz (2004) An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101: 7566-7571
  21. Frankel, A. and R. W. Roberts (2003) In vitro selection for sense codon suppression. RNA 9: 780-786 https://doi.org/10.1261/rna.5350303
  22. Jackson, R. J., S. Napthine, and I. Brierley (2001) Development of a tRNA-dependent in vitro translation system. RNA 7: 765-773 https://doi.org/10.1017/S1355838201002539
  23. Son, J. M., J. H. Ahn, M. Y Hwang, C. G. Park, C. Y. Choi, and D. M. Kim (2006) Enhancing the efficiency of cell-free protein synthesis through the polymerase-chain-reaction-based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues. Anal. Biochem. 351: 187-192 https://doi.org/10.1016/j.ab.2005.11.047
  24. Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239: 881-886 https://doi.org/10.1111/j.1432-1033.1996.0881u.x
  25. Nakano, H., R. Okumura, C. Goto, and T. Yamane (2002) In vitro combinatorial mutagenesis of the 65th and 222nd positions of the green fluorescent protein of Aequarea victoria. Biotechnol. Bioprocess Eng. 7: 311-315 https://doi.org/10.1007/BF02932841
  26. Lee C.-S., S.-H. Lee, Y.-G. Kim, C.-H. Choi, Y.-K. Kim, and B.-G. Kim (2006) Biochemical reactions on a micro-fluidic chip based on a precise fluidic handling method at the nanoliter scale. Biotechnol. Bioprocess Eng. 11: 146-153 https://doi.org/10.1007/BF02931899
  27. Park, Y. S., S. H. Hwang, and C.-Y. Choi (2005) Construction of CpG motif-enriched DNA vaccine plasmids for enhanced early immune response. Biotechnol. Bioprocess Eng. 10:29-33 https://doi.org/10.1007/BF02931179
  28. Kim, D.-M., C.-Y. Choi, J.-H. Ahn, T.-W. Kim, N.-Y. Kim, I- S. Oh, and C.-G. Park (2006) Development of a rapid and productive cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 11: 235-239 https://doi.org/10.1007/BF02932036
  29. Schagger, H. and G. von Jagow (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2