Enhanced Production of Laccase from Trametes sp. by Combination of Various Inducers

  • Jang, Moon-Yup (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Ryu, Won-Youl (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Cho, Moo-Hwan (School of Chemical Engineering & Technology, Yeungnam University)
  • Published : 2006.04.30

Abstract

In this study, we have attempted to determine the optimum concentration of inducers responsible for efficient laccase production by the white-rot fungus, Trametes sp. Variations in laccase activity were investigated with changing concentrations of 2,5-xylidine, syringaldazine, ABTS, and guaiacol. Enhancement of peak laccase activity was achieved via the combination of 2,5-xylidine with ABTS, syringaldazine, or guaiacol, resulting in increases of up to 359, 313, and 340%, respectively, as compared to control values. Among the tested inducers, the addition of 0.1mM of ABTS coupled with 1.0mM of 2,5-xylidine in the medium after 24 h of cultivation proved optimal with regard to laccase enzyme production.

Keywords

References

  1. Addieman, K. and F. Archibald (1993) Kraft pulp bleaching and delignification by dikaryons and monokaryons of Trametes versicolor. Appl. Environ. Microbiol. 59: 266-273
  2. Eggert, C., U. Temp, and K.-E. L. Eriksson (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 407: 89-92 https://doi.org/10.1016/S0014-5793(97)00301-3
  3. Addleman, K., T. Dumonceaux, M. G. Paice, R. Bourbonnais, and F. S. Archibald (1995) Production and characterization of Trametes versicolor mutants unable to bleach hardwood kraft pulp. Appl. Environ. Microbiol. 61: 3687-3694
  4. Bergbauer, M., C. Eggert, and G. Kraepelin (1991) Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 35: 105-109
  5. Chivukula, M. and V. Renganathan (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Environ. Microbiol. 61: 4374-4377
  6. Bollag, J. M., K. L. Shuttleworth, and D. H. Anderson (1988) Laccase-mediated detoxification of phenolic compounds. Appl. Environ. Microbiol. 54: 3086-3091
  7. Nakamura, Y. and G. Mtui (2003) Biodegradation of endocrine- disrupting phenolic compounds using laccase followed by activated sludge treatment. Biotechnol. Bioprocess Eng. 8: 294-298 https://doi.org/10.1007/BF02949220
  8. Warsinke, A., A. Benkert, and F. W. Sheller (2000) Electrochemical immunoassays. Fresenius J. Anal. Chem. 366: 622-634 https://doi.org/10.1007/s002160051557
  9. Gomes S. A. S. S. and M. J. F. Rebelo (2003) A new laccase biosensor for polyphenols determination. Sensors 3: 166-175 https://doi.org/10.3390/s30600166
  10. Quan, D., Y. Kim, K. B. Yoon, and W. Shin (2002) Assembly of laccase over platinum oxide surface and application as an amperometric biosensor. Bull. Kor. Chem. Soc. 23: 385-390 https://doi.org/10.5012/bkcs.2002.23.3.385
  11. Chen, T., S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H.-H. Kim, and A. Heller (2001) A miniature biofuel cell. J. Am. Chem. Soc. 123: 8630-8631 https://doi.org/10.1021/ja0163164
  12. Ryu, W. Y., J. M. Jang, and M. H. Cho (2003) The selective visualization of lignin peroxidase, manganese peroxidase and laccase, produced by white rot fungi on solid media. Biotechnol. Bioprocess Eng. 8: 130-134 https://doi.org/10.1007/BF02940268
  13. Eggert, C., U. Temp, and K. E. Eriksson (1996) The ligninolytic system of white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62: 1151-1158
  14. Rancano, G., M. Lorenzo, N. Molares, Rodriguez Couto, S., and A. Sanroman (2003) Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochem. 39: 467-473 https://doi.org/10.1016/S0032-9592(03)00083-9
  15. Rogalski, J., T. Lundell, A. Leonowicz, and A. Hatakka (1991) Production of laccase, lignin peroxidase and manganese- dependent peroxidase by various starins of Trametes versicolor depending on culture conditions. Acta Microbiol. Pol. 40: 221-234
  16. Fortina, M. G., A. Acquati, P. Rossi, P. L. Manachini, and C. Di Genuaro (1996) Production of laccase by Botrytis cinerea and fermentation studies with strain F226. J. Ind. Microbiol. 17: 69-72 https://doi.org/10.1007/BF01570044
  17. Rescigno, A., F. Sollai, N. Curreli, A. Rinaldi, and E. Sanjust (1993) A extracellular laccase from Pleurotus sajorcaju. J. Biochem. 42: 227-238
  18. Tien, M. and T. K. Kirk (1983) Lignin-degrading enzyme from the hymenomycete Phanerochate chrysosporium Burds. Science 221: 661-663 https://doi.org/10.1126/science.221.4611.661
  19. Ryu, W. R., S. H. Shim, M. Y. Jang, Y. J. Jeon, K. K. Oh, and M. H. Cho (2000) Biodegradation of pentachlorophenol by white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol. Bioprocess Eng. 5: 211-214 https://doi.org/10.1007/BF02936597
  20. Galhaup, C. and D. Haltrich (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl. Microbiol. Biotechnol. 56: 225-232 https://doi.org/10.1007/s002530100636
  21. Tavares A. P. M., M. A. Z. Coelho, J. A. P. Coutinho, and A. M. R. B. Xavier (2005) Laccase improvement in submerged cultivation: induced production and kinetic modeling. J. Chem. Technol. Biotechnol. 80: 669-676 https://doi.org/10.1002/jctb.1246
  22. Collins, P. J. and A. Dobson (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63: 3444-3450