국내에서 선발한 Bacillus thuringiensis sp. aizawai 균주의 주요 나방류 해충에 대한 살충 활성 및 배양특성

Insecticidal Activities against Major Lepidopteran Pests and Culture Condition of Bacillus thuringiensis sp. aizawai collected in Korea

  • 이상계 (농촌진흥청 연구개발국) ;
  • 최기현 ((주)그린바이오텍 생명공학연구소) ;
  • 이영수 (경기도농업기술원 제2농업연구소) ;
  • 오경석 (농촌진흥청 연구개발국) ;
  • 오정훈 (한국담배인삼공사) ;
  • 최성원 ((주)그린바이오텍 생명공학연구소)
  • 발행 : 2006.06.30

초록

충북, 충남, 강원도 일대에서 채취한 토양시료로부터 Bt 균주를 분리하고 이들 균주 중 세포내 내독소 단백질 결정체를 형성한 10개의 균주를 분리하여 균체생산수율과 살충력이 뛰어난 균주를 선발하기 위해서 배양 및 생물검정 시험을 수행하였다. 그 결과, 배추좀나방에 대한 살충력은 물론이고, 파밤나방과 담배거세미나방에 대한 살충력도 상대적으로 높고, 배추좀나방 저항성 계통에 대한 살충력이 우수하면서 균체량과 활성포자수가 많은 GB-413 균주를 최종 선발하였다. 선발된 균주의 상업적 생산 적용을 위해 배양특성 및 배양 공정 최적화 실험을 수행하였다. 탄소원인 초기 포도당 농도를 낮추어 포자형성이 유도되도록 배지조성을 변경하고 배양 중에 탄소원을 첨가하는 방식으로 배양공정을 변경한 결과, 포자형성율과 활성포자수가 증가하였고 포자형성시간 및 배양시간이 단축되었으며, 살충확성의 저하는 나타나지 않았다. 이렇게 최적화된 생산배지 및 공정을 5톤 발효조 배양에 최종 적용한 결과 유사한 배양결과를 얻어 상업화생산을 위한 대량배양의 가능성을 높여주었다.

This experiment was conducted to select prominent microorganisms with a good insecticidal activity among the ten species, which isolated from soil at the near of Chung-buk, Chung-nam, and Gang-won provinces and made protein crystal endotoxin. As a result, GB-413 strain was finally selected, which showed the high insecticidal activity against susceptible diamondback moth (Plutella xylostella), beet army worm (Spodoptera exigua) and tobacco cutworm (Spodoptera litura) as well as resistant diamondback moth strains. By modifying the cultivation process f.g. lowing the glucose concentration at early cultivation stage and adding the carbon after inducing the spores, the percentage of making spore as well as the number of active spore were increased and the time for cultivation and spore forming was reduced without a reduction of insecticidal activity. These results were not only applied successfully for the optimized cultivation process for a fermentation tank containing five tons capacity, but also improved the possibility of mass cultivation for commercial production.

키워드

참고문헌

  1. Aronson, A. I., W. Beckman and P. Dunn (1986) Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50:1-24
  2. Benoit, T. G., G. R. Wilson and C. L. Baugh (1990) Fermentation during growth and sporulation of Bacillus thuringiensis HD-1. Lett. Appl. Microbiol. 10:15-18 https://doi.org/10.1111/j.1472-765X.1990.tb00084.x
  3. Bulla, L. A. Jr. D. B. Bechtel, K. J. Kramer, Y. I. Shethna, A. I. Aronson and P. C. Fitz-James (1980) Ultrastructure, physiology and biochemistry of Bacillus thuringiensis. CRC Crit. Rev. Microbiol. 8: 147-204 https://doi.org/10.3109/10408418009081124
  4. Crecchio, C. and G. Stotzky (2001) Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montrorillonite-humic acids-Ai hydroxypolymers. Soil BioI. Biochem. 33:573-581 https://doi.org/10.1016/S0038-0717(00)00199-1
  5. Flores, E. R., F. Perez and M. D. L. Torre (1997) Scale-up of Bacillus thuringiensis fermentation based on oxygen transfer. J. Fermentation and Bioengineering 83:561-564 https://doi.org/10.1016/S0922-338X(97)81137-3
  6. Higuchi, K., H. Saitoh, E. Mizuki, T. Ichimatsu and M. Ohba (2000) Larval susceptibility of the diamondback moth, lutella xylostella (Lepidoptera: Plutellidae), to Bacillus thuringiensis H serovars isolated in Japan. Microbiol. Res. 155:23-29 https://doi.org/10.1016/S0944-5013(00)80018-X
  7. Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242-255
  8. Khetan, S. K. (2001) Bacterial insecticide: Bacillus thuringiensis. pp.3-42, In Microbial pest control, Marcel Dekker Inc., USA
  9. Lambert, B. and M. Peferoen (1992) Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. Bioscience 42: 112-122 https://doi.org/10.2307/1311652
  10. Morris, O. N., V. Converse, P. Kanagaratnam and J. S. Davies (1996) Effect of cultural conditions on spore-crystal yield and toxicity of Bacillus thuringiensis subsp. aizawai (HD133). J. Inverte. Pathol. 67: 129-136 https://doi.org/10.1006/jipa.1996.0020
  11. Morris, O. N., P. Kanagaratnam and V. Converse (1997) Suitability of 30 agricultural products and by-products as nutrient sources for laboratory production of Bacillus thuringiensis subsp. aizawai (HD133). J. Inverte. Pathol. 70: 113-120 https://doi.org/10.1006/jipa.1997.4667
  12. Mummigatti, S. G. and A. N. Raghunathan (1990) Influence of media composition on the production of ${\delta}$-endotoxin by Bacillus thuringiensis. J. Invertebr. Pathol. 55:147-151 https://doi.org/10.1016/0022-2011(90)90049-C
  13. Ohba, M. and K. Aizawa (1978) Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebra. Pathol. 32:303-309 https://doi.org/10.1016/0022-2011(78)90193-3
  14. Schnepf, H. (1995) Bacillus thuringiensis toxins: regulation, activities and structural diversity. Curr. Opin. Biotech. 6:305-312 https://doi.org/10.1016/0958-1669(95)80052-2
  15. Tang, J. D., A. M. Shelton, J. V. Rie, S. D. Roeck, W. J. Moar, R. T. Roush and M. Peferoen (1996) Toxicity of Bacillus thuringiensis spore and crystal protein to resistant Diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 62:564-569
  16. Zouari, N., S. B. S. Ali and S. Jaoua (2002) Production of delta-endotoxins by Bacillus thuringiensis strains exhibiting various insecticidal activities towards lepidoptera and diptera in gruel and fish meal media. Enz. Microbial Technol. 31:411-418 https://doi.org/10.1016/S0141-0229(02)00096-0
  17. 김호산, 노종열, 이대원, 우수동, 강석권 (1998) 새로운 Bacillus thuringiensis NT0423 균주의 배양체계. 한국응용공충학회지 37(2):187-191
  18. 노종열, 박현우, 김호산, 진병래, 강석권 (1995) 새로운 Bacillus thuringiensis 균주의 분리. 한국응용곤충학회지 34(4):373-377
  19. 장진희, 노종열, 제연호, 이대원, 우수동, 설광열, 강석권 (1996) 거세미나방속 해충에 독성을 가지는 Bacillus thuringiensis 균주의 분리 및 특성. 한국잠사학회지38(2):154-159