DOI QR코드

DOI QR Code

수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed

  • 고지연 (작물과학원 영남농업연구소 식물환경과) ;
  • 이재생 (작물과학원 영남농업연구소 식물환경과) ;
  • 김춘송 (작물과학원 영남농업연구소 식물환경과) ;
  • 정기열 (작물과학원 영남농업연구소 식물환경과) ;
  • 최영대 (작물과학원 영남농업연구소 식물환경과) ;
  • 윤을수 (작물과학원 영남농업연구소 식물환경과) ;
  • 박성태 (작물과학원 영남농업연구소 식물환경과) ;
  • 강항원 (농촌진흥청 평가조정담당관실) ;
  • 김복진 (영남대학교 자연자원대학)
  • Ko, Jee-Yeon (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Lee, Jae-Sang (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Kim, Choon-Song (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Jeong, Ki-Yeol (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Choi, Young-Dae (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Yun, Eul-Soo (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Park, Seong-Tae (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Kang, Hwang-Won (Officer of director for evaluation and coordination, RDA) ;
  • Kim, Bok-Jin (School of Biological Resource, Yeungnam University)
  • 발행 : 2006.06.30

초록

오염부하가 심한 서낙동강 수계에서의 농산물 안전생산 및 건전한 농업환경유지를 위하여 수계내 오염원 및 수질을 조사하고 이를 수질성분 분포도로 작성한 결과는 다음과 같다. 1. 서낙동강 수계의 주오염원은 인구의 도시집중에 따른 생활하수 발생이 가장 많은 양을 차지하고 있었으며 이는 호계천, 신어천의 수질악화 및 하수종말처리장 방류수로 인한 조만강 하류의 수질 중 T-N, T-P 증가에도 영향을 미치고 있었다. 또한 서낙동강 수계 수질의 또 다른 문제인 염농도는 갈수기에 급격히 증가하여 갈수기의 서낙동강 중 하류 및 하류에 연결된 지천인 조만강과 평강천의 EC는 농업용수로 사용하기 어려운 수준으로 증가하였다. 부산 강서구의 동계 시설재배밀집지에서 사용되는 농업용수 수질 또한 EC가 서낙동강 중류 이후부터 1.0 ds/m를 초과하고 T-N함량도 $4{\sim}8mg/L$의 높은 수준이었다. 2. 서낙동강 수계 지류 중 T-N 및 T-P의 유달부하량은 조만강이 지류전체 부하량의 각각 56%, 61%으로 가장 많았으며, 이는 조만강의 유량이 많았던 것에 기인하였다. 3. 서낙동강 수계 수질을 N과 EC성분분포를 기초로 로 서낙동강 수계 지류별수질 취약분포도를 작성한 결과, 신어천, 호계천 등은 적극적인 영양염류 저감대책이 수립되어야 할 지역으로 나타났으며, 서낙동강 중류 및 평강천 일원은 영양염류 및 염류장애 우려지역, 서낙동강 하류는 염류장애 대책지역으로 나타났다. 4. 수질현황 및 수질환경 관련 인자를 지리정보가 결합된 분포도로 표현하면 정보의 전달이 명료하면서도 그 자체로도 오염 개선기술 개발 필요지 구분과 같은 message를 전달할 수 있었고, 공간적 분포에 따른 수질변화를 오염원의 공간적 분포와 match시켜 이의 원인을 해석하고 그에 따른 대책을 수립하기 쉬운 장점이 있었다.

To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

키워드

참고문헌

  1. Lee, Y.S., Cho, J.S., Lee, H.j., Lee, Y.H., Sohn, B.K, Heo, J.S. (1999) Status of water quality in Nakdong river districts. Kor. J. Environ. Agric. 18(2): 126-134
  2. Uhm, M.J Choi J.S., Han, S.G., Kim, K.C and Moon, Y. H. (2000) Irrigation water qualities along Dongjin river watershed during 1994-1998. Kor. J. Environ. Agric. 19(2):110-115
  3. Yun, S.G., Lee, J.S., Jung, G.B., Kim, M.K., Kim, S.J., Koh, M.H. and Eom, K.C. (2002) Evaluation of water quality characteristics on tributaries of Mankyeong river watershed. Kor. J. Environ. Agric. 21(4): 237-242 https://doi.org/10.5338/KJEA.2002.21.4.237
  4. Yun, S.G., Kim, W.L, Kim, J.H., Kim, S.J., Koh, M.H. and Eom, K.C. (2002) Evaluation of water quality characteristics on tributaries of Dongjin river watershed. Kor. J. Environ. Agric. 21(4): 243-247 https://doi.org/10.5338/KJEA.2002.21.4.243
  5. Jung, Y.S., Yang, J.E., Joo, Y.K, Lee, J.K., Park, Y.S., Choi., M.H, and Choi., S.C (1997) Water quality of streams and Agricultural Wells Related to Different Agricultural Practices in Small catchments of the Han River Basin. Kor. J. Environ. Agric. 16(23) : 199-205
  6. Lee, K.B. Kim, J.C, Kim, J.G. Lee, D.B., Park, CW. and Kim, J.D. (2005) Assesment of pollutant loads for water assessment in Mankyeong river. Kor. J. Environ. Agric. 24(2): 83-90 https://doi.org/10.5338/KJEA.2005.24.2.083
  7. Lee, KB., Kim, J.C, Kim, J.G. Lee, D.B., Park, CW. and Kim, J.D. (2005) Assesment of pollutant loads in Mankyeong river. Kor. J. Environ. Agric. 24(2): 91-97 https://doi.org/10.5338/KJEA.2005.24.2.091
  8. Lee, K.B., Kim, J.C, Park, J.H., Lee, D.B., and Kim, J.G. (2004) Assessment of pollutant loads for water enhancement in the Jongeupcheon of Dongjin river. Kor. J. Environ. Agric. 23(1): 41-46 https://doi.org/10.5338/KJEA.2004.23.1.041
  9. Annual Report of Agro-environment monitoring. (2003) NIAST, RDA
  10. John RJ. (2000) Remote sensing of the environment. Prentice hall service in geographic information science
  11. Annual report of Kimhae statistics (2003)
  12. Annual report of Gangseo-Gu statistics (2003)
  13. Management practice for TMDL in watershed. (2004) National institute of environmental research. Ministry of environment
  14. Jung, K.H., Kim, W.T., Hur, S.O., Ha, S.K., Jung, P.K., and Jung, Y.S. (2004) USLE/RUSLE factors for national scale soil loss estimation based digital detailed map. Korea journal soil science and fertilizer. 37(4):199-206
  15. Lee, E.J. Development and management of environmental friendly agricultural practice. Research analysis report 2000-1. (2000) Suwon, Korea 1-368 pp
  16. Ko, J.Y., Lee, J.S., Kim, M.T., Kim, C.S., Kang, U'G; and Kang, H.w. (2005) Effects of farming practice and $NO_3-N$ contents of groundwater with different locations under intensive greenhouse area. Kor. J. Environ. Agric. 24(3): 261-269 https://doi.org/10.5338/KJEA.2005.24.3.261
  17. USDA Salinity laboratory. (1953) Saline and Alkaline soils. USDA HB60: pp. 160
  18. Shin, J.D., Lee, J.S., Kim, W.I., Jung, G.B., Kim, J.B., Yun, S.G., and Lee, M.S. (2004) The establishment of critical level of salt contents in tube well water near sea at dry season using bioassay. The proceeding of Kor. J. Environ. Agric
  19. Skene, T. M., and J. M. Oades. 1995. The effects of sodium Adsorption Ratio and Electrolyte concentration on Water Quality: Laboratory Studies. Soil science. 159(1): 65-73 https://doi.org/10.1097/00010694-199501000-00008
  20. Ko J.Y., Lee J.S, Jung K.Y., Kim C.S., Kim M.T 2002. Monitoring of groundwater in intensive greenhouse area in Yeongnam province. Annual research Report. YARI. NICS. RDA. pp. 591-607
  21. Workshop proceeding of the korean society of agriculture and environmental. Non-point source management practice for water quality conservation. (2004) pp. 91-109
  22. Giupponi C, B. Eiselt, and P.F. Ggetti. (1999) A multicriteria approach for mapping risk of agricultural pollution for water resources: The venice lagoon watershed case study. Journal of environmental management. 56: 259-269 https://doi.org/10.1006/jema.1999.0283