Predicting Model of Students Leaving Their Majors Using Data Mining Technique

데이터마이닝 기법을 이용한 전공이탈자 예측모형

  • Published : 2006.10.30

Abstract

Nowadays most colleges are confronting with a serious problem because many students have left their majors at the colleges. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, the objective of this paper Is to find a predicting model of students leaving their majors. The sample for this study was chosen from a university in Kangwon-Do during seven years(2000.3.1 $\sim$ 2006. 6.30). In this study, the ratio of training sample versus testing sample among partition data was controlled as 50% : 50% for a validation test of data division. Also, this study provides values about accuracy, sensitivity, specificity about three kinds of algorithms including CHAID, CART and C4.5. In addition, ROC chart and gains chart were used for classification of students leaving their majors. The analysis results were very informative since those enable us to know the most important factors such as semester taking a course, grade on cultural subjects, scholarship, grade on majors, and total completion of courses which can affect students leaving their majors.

Keywords

References

  1. 강현철, 한상태, 최종우, 김은석, 김미경, 'SAS Enterprise Miner 4.0을 이용한 데이터마이닝 방법론 및 활용', 자유아카데미, (2001)
  2. 문정호, "사례연구를 통한 데이터마이닝 수행과정 연구', 서울대학교 석사학위논문, (2002)
  3. 박철용, 'Analysis of Students Leaving Their Majors Using Decision Tree', 한국데이터정보과학회지 제13권 제2호, (2002):157-165
  4. 배화수, 조대현, 석경하, 김병수, 최국렬, 이종언, 노세원, 이승철, 손용희, 'SAS Enterprise Miner를 이용한 데이터마이닝', 교우사, (2005)
  5. 이건창, 정남호, 신경식, '신용카드 시장에서 데이터마이닝을 이용한 이탈고객 분석', 한국지능정보시스템학회 2001년도 춘계정기학술대회, (2001):421-444
  6. 이석호, '데이터베이스 시스템', 정익사, (1995)
  7. 조윤정, '데이터마이닝을 이용한 종합건강진단센터의 데이터베이스 마케팅에 관한 연구', 서울대학교 보건대학원 보건석사학위논문(2001):53-56
  8. 최재성, 'Logistic regression model for major separation rate', 한국데이터정보과학회지 제13권 제2호, (2002):129-138