DOI QR코드

DOI QR Code

Optics of Refractometers for Refractive Power Measurement of the Human Eye

  • Ko, Dong-Seob (Department of Techno-Marketing, Mokwon University) ;
  • Lee, Byeong-Ha (Department of Information and Communications, Gwangju Institute of Science and Technology)
  • Received : 2006.12.07
  • Published : 2006.12.25

Abstract

In the field of ophthalmology, many diagnostic instruments based on optical technology have been developed, such as refractometer, keratometer, corneal mapper, tonometer, fundus camera, slit lamp, laser scan ophthalmoscope and optical coherence tomography. Among them, the refractometer that is used for measuring the refractive power of the human eye has the long research history and various types have been developed. However the efforts to realize more accurate and precise measurement are still in progress. The wavefront analyzer commercialized in recent years is an excellent outcome of such efforts. In this paper, a brief account of the developmental history of various refractometers including the wavefront analyzer is summarized, and the underlying measurement principle is introduced in the view of optics. Finally, the technical issues that should be solved for getting better performance are discussed.

Keywords

References

  1. T. Hellmuth, 'Sensors in Ophthalmology.' Sensors Update, vol. 3, no. 1, pp. 289-323, 2001 https://doi.org/10.1002/1616-8984(199801)3:1<289::AID-SEUP289>3.0.CO;2-A
  2. S. M. MacRae, R. R. Krueger, and R. A. Applegate, Customized corneal ablation (Slack, Thorofare, 2001)
  3. H. C. Howland, 'The history and methods of ophthalmic wavefront sensing,' J. Refract. Surg., vol. 16, no. 5, pp. S552-S553, 2000
  4. L. N. Thibos, 'Principles of Hartmann-Shack aberrometry,' J. Refract. Surg., vol. 16, no. 5, pp. S563-S565, 2000
  5. S. Buck, Der gesch$\ddot{a}$rfte blick zur geschichte der brille und ihrer verwendung in Deutschland seit 1850, Ph.D. Thesis, Philipps Univ., Germany, 2002
  6. M. Tscherning, 'Die monochromatischen aberrationen des menschlichen auges,' Z. Psychol. Physiol. Sinn., vol. 6, pp. 456-471, 1894
  7. B. Howland and H. C. Howland, 'Subjective measurement of high-order aberrations of the eye,' Science, vol. 193, pp. 580-582, 1976 https://doi.org/10.1126/science.959814
  8. H. C. Howland and B. Howland, 'A subjective method for the measurement of monochromatic aberrations of the eye,' J. Opt. Soc. Am., vol. 67, no. 11, pp. 1508-1518, 1977 https://doi.org/10.1364/JOSA.67.001508
  9. R. E. Reason, 'Sight-testing apparatus', US patent 2049222, 1936
  10. G. Collins, 'The electronic refractometer,' Br. J. Physiol. Opt., vol. 1, pp. 30-40, 1937
  11. N. Roth, 'Automatic optometer for use with the undrugged human eye,' Rev. Sci. Instrum., vol. 36, no. 11 pp. 1636-1641, 1965 https://doi.org/10.1063/1.1719409
  12. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, 'Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,' J. Opt. Soc. Am. A, vol. 11, no. 7, pp. 1949-1957, 1994 https://doi.org/10.1364/JOSAA.11.001949
  13. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, 'Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,' Optom. Vis. Sci., vol. 78, no. 3, pp. 152-156, 2001 https://doi.org/10.1097/00006324-200103000-00007
  14. E. Moreno-Barriuso and R. Navarro, 'Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,' J. Opt. Soc. Am. A, vol. 17, no. 6, pp. 974-985, 2000 https://doi.org/10.1364/JOSAA.17.000974
  15. B. C. Platt and R. Shack, 'History and principles of Shack-Hartmann wavefront sensing,' J. Refract. Surg., vol. 17, no. 5, pp. S573-S577, 2001
  16. S. A. Burns, 'The spatially resolved refractometer,' J. Refract. Surg., vol. 16, no. 5, pp. S566-S569, 2000
  17. M. Mrochen, M. Kaemmerer, P. Mierdel, H.-E. Krinke, and T. Seiler, 'Principles of Tscherning aberrometry,' J. Refract. Surg., vol. 16, no. 5, pp. S570-S571, 2000
  18. V. V. Molebny, S. I. Panagopoulou, S. V. Molebny, Y. S. Wakil, and I. G. Pallikaris, 'Principles of ray tracing aberrometry,' J. Refract. Surg., vol. 16, no. 5, pp. S572-S575, 2000
  19. B. J. Wilson, K. E. Decker, and A. Roorda, 'Monochromatic aberrations provide an odd-error cue to focus direction,' J. Opt. Soc. Am. A, vol. 19, no. 5, pp. 833-839, 2002 https://doi.org/10.1364/JOSAA.19.000833
  20. W. N. Charman, Handbook of Optics, vol. 1, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe eds. (McGraw-Hill, New York, 1995), chap. 24
  21. Ophthalmic Test, The Korean Ophthalmological Society ed. (Jin Publishing, Seoul, 2002)
  22. M. Nohda, I. Umemura, and T. Arai, 'Eye-refractometer device', US patent 4390255, 1983
  23. K. Sekiguchi, 'Ophthalmic measuring apparatus', US patent 4878750, 1989
  24. R. J. Noll. 'Zernike polynomials and atmosphericturbulence,' J. Opt. Soc. Am., vol. 66, no. 3, pp. 207-211, 1976 https://doi.org/10.1364/JOSA.66.000207
  25. T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, 'Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,' Optom. Vis. Sci., vol. 80, no. 1, pp. 6-14, 2003 https://doi.org/10.1097/00006324-200301000-00003
  26. R. P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, and T. Seiler, 'Messplatz zur bestimmung der monochromatischen aberration des menschlichen auges,' Ophthalmologe, vol. 96, pp. 441-445, 1997 https://doi.org/10.1007/s003470050140
  27. M. S. Smirnov, 'Measurement of the wave aberration of the human eye,' Biofizika, vol. 6, pp. 687-703, 1961
  28. J. Hartmann, 'Bemerkungen uber den Bau und die Justirung von Spektrographen.' Z. Instrumentenkd., vol. 20, pp. 47-58, 1900
  29. R. V. Shack and B. C. Platt, 'Production and use of a lenticular Hartmann screen,' J. Opt. Soc. Am., vol. 61, p. 656, 1971
  30. D. M. Topa, 'Wavefront reconstruction for the Shack-Hartmann wavefront sensor,' Proc. SPIE, vol. 4769, pp. 101-115, 2002 https://doi.org/10.1117/12.481179
  31. L. A. Poyneer, 'Advanced techniques for Fourier transform wavefront reconstruction,' Proc. SPIE, vol. 4839, pp. 1023-1034, 2003 https://doi.org/10.1117/12.459461
  32. W. J. Geeraets and E. R. Berry, 'Ocular spectral characteristics as related to hazards from lasers and other light sources,' Am. J. Ophthalmot., vol. 66, no. 1, pp. 15-20, 1968 https://doi.org/10.1016/0002-9394(68)91780-7
  33. Y. Kawagoe, N. Takai, and T. Asakura, 'Speckle reduction by a rotating aperture at the fourier trans-form plane,' Opt. Laser Eng., vol. 3, pp. 197-218, 1982 https://doi.org/10.1016/0143-8166(82)90022-7
  34. D. R. Neal, J. Copland, and D. A. Neal, 'Shack-Hartmann wavefront sensor precision and accuracy,' Proc. SPIE, vol. 4779, pp. 148-160, 2002 https://doi.org/10.1117/12.450850
  35. W. Jiang, H. Xian, and F. Shen, 'Detection error of Shack-Hartmann wavefront sensors,' Proc. SPIE, vol. 3126, pp. 534-544, 1997 https://doi.org/10.1117/12.279060
  36. S. Thomas, 'Optimized centroid computing in a Shack-Hartmann sensor,' Proc. SPIE, vol. 5490, pp. 1238-1246, 2004 https://doi.org/10.1117/12.550055
  37. L. A. Poyneer, Correlation wave-front sensing algorithms for Shack-Hartmann-based adaptive optics using a point source, Report No. UCRL-JC-152975, Lawrence Livermore National Lab. (Livermore, CA, USA), 2003

Cited by

  1. A Study of Optical Properties of Intraocular Lenses and of Measurement of the Index of Reflection for an Unknown Liquid vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.236