DOI QR코드

DOI QR Code

Glutathione (GSH) Response as a Metabolic Biomarker to Benzo(α)pyrene and Aroclor 1254 Exposure in the Pacific Oyster Crassostrea gigas

  • Jo, Qtae (East Sea Fisheries Research Institute) ;
  • Choy, Eun-Jung (Department of Biology, Pusan National University) ;
  • Lee, Yong-Hwa (East Sea Fisheries Research Institute) ;
  • Ko, Sung-Jung (Korea Institute of Maritime and Fisheries Technology) ;
  • Song, Young-Chae (Department of Civil and Environmental Engineering, Korea Maritime University) ;
  • Kim, Myoung-Jin (Department of Civil and Environmental Engineering, Korea Maritime University) ;
  • Hwang, Eung-Ju (Department of Environmental Engineering, Daegu University)
  • Published : 2006.12.30

Abstract

We measured activities of the ubiquitous tripeptide non-protein thiol (L-${\gamma}$-glutamyl-L-cysteinyl-glycine), glutathione (GSH), which is believed to playa fundamental role in detoxifying xenobiotics in biological systems, as a metabolic biomarker for benzo(${\alpha}$)pyrene and Aroclor 1254 exposure in the Pacific oyster Crassostrea gigas. Reproductive oysters were exposed to the pollutants for 50 days by the algal vectoring method in which the oysters were fed with concentrated standard algal foods grown in culture media containing Aroclor 1254 (0, 5, 50, 500 ng/g) or benzo(${\alpha}$)pyrene (0, 10, 100, 1,000 ng/g). Both pollutants induced maternal GSH activities in 10 days in a dosage-dependent manner (p<0.05), although Aroclor 1254 was stronger. The pollutant-driven GSH elevation persisted for 20 to 30 days depending on the pollutants and concentrations. Thereafter, a drastic decline in the GSH activity was observed due to metabolic failure, after which the oyster GSH remained at low levels throughout the remainder of the experiment. The pollutant exposures influenced maternal reproductive output in terms of fertilization, hatching, and morphology. These results imply that changes in activity of the GST-catalyzing molecule can be used as an oyster biomarker for Aroclor 1254 and benzo(${\alpha}$)pyrene exposure.

Keywords

References

  1. Achard, M., M. Baudrimont, A. Boudou and J.P. Bourdineaud. 2004. Induction of a multixenobiotic resistance mechanism (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure. Aquat. Toxicol., 67, 347-357 https://doi.org/10.1016/j.aquatox.2004.01.014
  2. Akcha, F., C. Izuel, P. Venier, H. Budzinski, T. Burgeot and J.-F. Narbonne. 2000. Enzymatic biomarker measurement and study of DNA adduct formation in benzo[$\alpha$] pyrene-contaminated mussels, Mytilus galloprovincialis. Aquat. Toxicol., 49, 269-287 https://doi.org/10.1016/S0166-445X(99)00082-X
  3. Anderson, M.E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol., 113, 548-555 https://doi.org/10.1016/S0076-6879(85)13073-9
  4. Bard, S.M. 2000. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat. Toxicol., 48, 357-389 https://doi.org/10.1016/S0166-445X(00)00088-6
  5. Bucheli, T.D. and K. Fent. 1995. Induction of cytochromeP450 as a biomarker for environmental contamination in aquatic ecosystems. Crit. Rev. Environ. Sci. Technol., 25, 201-268 https://doi.org/10.1080/10643389509388479
  6. Canesi, L, A. Viarengo, C. Leonzio, M. Filippelli and G. Gallo. 1999. Heavy metals and glutathione metabolism in mussel tissues. Aquat. Toxicol., 46, 67-76 https://doi.org/10.1016/S0166-445X(98)00116-7
  7. Casillas, E., D. Misitano, L.L. Johnson, L.D. Rhodes, T.K. Collier, J. Stein, T. Christiansen, B. Korsgaard and A. Jespersen. 1991. Inducibility of spawning and reproductive success of female English sole (Parophrys vetulus) from urban and nonurban areas of Puget Sound, Washington. Mar. Environ. Res., 31, 99-122 https://doi.org/10.1016/0141-1136(91)90022-Z
  8. Cheung, C.C.C., G.J. Zheng, AM.Y. Li, B.J. Richardson and P.K.S. Lam. 2001. Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic Toxicol., 52, 189-203 https://doi.org/10.1016/S0166-445X(00)00145-4
  9. Cheung, C.C.C., W.H.L. Siu, B.J. Richardson, S.B. Del.uca-Abbott., and P.K.S. Lam. 2004. Antioxidant responses to benzo(\alpha)pyrene and Aroclor 1254 exposure in the green-lipped mussel, Perna viridis. Environ. Pollut., 128,393-403 https://doi.org/10.1016/j.envpol.2003.09.010
  10. Dasmahapatra, A.K., B.A.B. Wimpee, AL. Trewin, c.r. Wimpee, J.K. Ghorai and R.J. Hutz. 2000. Demonstration of 2,3,7,8-tetrachlorodibenzo-$\rho$-dioxin attenuation of P450 steroidogenic enzyme mRNAs in rat granulosa cell in vitro by competitive reverse transcriptase-polymerase chain reaction assay. Mol. Cell. Endocrinol., 164, 5-18 https://doi.org/10.1016/S0303-7207(00)00245-8
  11. Dellali, M, M. Romeo and P. Aissa. 2001. Annual variations of catalase activity in mussels and clams from Lake Bizerte. Oceanol. Acta, 24, 263-271 https://doi.org/10.1016/S0399-1784(01)01145-8
  12. De Luca-Abbott, S.B., B.J. Richardson, K.E. McClellan, G.J. Zheng, M. Martin and P.K.S. Lam. 2005. Field validation of antioxidant enzyme biomarkers in mussels (Perna viridis) and clams (Ruditapes philippinarum) transplanted in Hong Kong coastal waters. Mar. Pollut. Bull., 51, 694-707 https://doi.org/10.1016/j.marpolbul.2005.01.010
  13. Deneke, S.M. and B.L. Fanburg. 1989. Regulation of cellular glutathione. Am. J. Physiol., 257, 163-173
  14. Depledge, M.H., J.M. Weeks and P. Bjerregaard. 1994. Heavy metals. In: Calow, P. ed., Handbook of Ecotoxicology, Vol. 2, Blackwell Publisher, Cam-bridge, 79-98
  15. Griffith, O.W. 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. BioI. Med., 27, 922-935 https://doi.org/10.1016/S0891-5849(99)00176-8
  16. Hall, A.T. and J.T. Oris. 1991. Anthracene reduces reproductive potential and is maternally transferred during long-term exposure in fathead minnows. Aquat. Toxicol., 19, 249-264 https://doi.org/10.1016/0166-445X(91)90022-2
  17. His, E., M.N.L. Seaman and R. Beiras. 1997. A simplification of the bivalve embryogenesis larval development bioassay method for water quality assessment. Wat. Res., 31, 351-355 https://doi.org/10.1016/S0043-1354(96)00244-8
  18. Hoffmann, J.L. and J.T. Oris. 2006. Altered gene expression: A mechanism for reproductive toxicity in zebrafish exposed to benzo[$\alpha$]pyrene. Aquat Toxicol., in press
  19. Jo, Q., H.B. Moon, Y.C. Cho, C. Lee, K.S. Kim, E.J. Choy, S.c. Ko and Y.C. Song. 2005a. Effects of sediment elutriates on the early reproductive outputs in the Pacific oyster, Crassostrea gigas. J. Fish. Sci. Technol., 8, 27-33 https://doi.org/10.5657/fas.2005.8.1.027
  20. Jo, Q, E.J. Choy, S.J. Lee, Y.C. Cho, C. Lee and Y Kim. 2005b. Stress expression by the maternally transferred xenobiotic pollutants in the reproductive outputs of the Pacific oyster, Crassostrea gigas. J. Aquacult., 18, 200-206
  21. Johnson, L.L., D. Misitano, S.Y Sol, G.M. Nelson, B. French, G.M. Ylitalo and T. Hom. 1998. Contaminant effects on ovarian development and spawning success in rock sole from Puget Sound, Washington. Trans. Am. Fish. Soc., 127, 375-392 https://doi.org/10.1577/1548-8659(1998)127<0375:CEOODA>2.0.CO;2
  22. Klinge, C.M., J.L. Bowers, P.C. Kulakosky, K.K. Kamboj and H.I. Swanson. 1999. The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements, Mol. Cell. Endocrinol., 157, 105-119 https://doi.org/10.1016/S0303-7207(99)00165-3
  23. Kurelec, B. 1992. The multixenobiotic resistance mechanism in aquatic organisms. Crit. Rev. Toxicol., 22, 23-43 https://doi.org/10.3109/10408449209145320
  24. Kurelec, B. and B. Pivcevic. 1991. Evidence for a multixenobiotic resistance mechanism in the mussel Mytilus galloprovincialis. Aquat. Toxicol., 19, 291-302 https://doi.org/10.1016/0166-445X(91)90054-D
  25. Lange, A., O. Ausseil and H. Segner. 2002. Alteration of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp. Biochem. Physiol. Part C, 131, 231-243
  26. Livingstone, D.R. 1991. Livingstone, Organic xenobiotic metabolism in marine invertebrates. Adv. Comp. Environ. Physiol., 7, 45-185 https://doi.org/10.1007/978-3-642-75897-3_2
  27. Livingstone, D.R., F. Lips, P.G. Martinez and R.K. Pipe. 1992. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar. Biol., 112, 265-276 https://doi.org/10.1007/BF00702471
  28. Livingstone, D.R., P. Lemaire, A. Matthews, L.D. Peters, C. Porte, P.J. Fitzpatrick, L. Forlin, C. Nasci, V. Fossato, N. Wootton and P. Goldfarb. 1995. Assessment of the impact of organic pollutants on goby (Zosterisessor ophiocephalus) and mussel (Mytilus galloprovincialis) from the Venice Lagoon, Italy: Biochemical studies. Mar. Environ. Res., 39, 235-240 https://doi.org/10.1016/0141-1136(94)00055-T
  29. Lowry, O.H., N.J. Rosebrough, A.L. FaIT and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. BioI. Chem., 193, 265-275
  30. Mannervik, B. and UH. Danielson. 1988. Glutathione transferases-structure and catalytic activity. CRC Crit. Rev. Biochem., 23, 283-337 https://doi.org/10.3109/10409238809088226
  31. Meister, A. 1995. Mitochondrial changes associated with glutathione deficiency. BBAlMol. Basis Dis., 1271, 35-42 https://doi.org/10.1016/0925-4439(95)00007-Q
  32. Monteiro, P.R., M.A. Reis-Henriques and J. Coimbra. 2000. Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder (Platichthys jlesus L.). Aquat. Toxicol., 48,549-559 https://doi.org/10.1016/S0166-445X(99)00055-7
  33. Moran, F.M., C.A. Vandevoort, J.W. Overstreet, B.L. Lasley and A.J. Conley. 2003. Molecular target of endocrine disruption in human luteinizing granulosa cells by 2,3,7,8-tetrachlorodibenzo-$\rho$-dioxin: inhibition of estradiol secretion due to decreased 17alphahydroxylase/17,20-lyase cytochrome P450 expression. Endocrinology, 144, 467-473 https://doi.org/10.1210/en.2002-220813
  34. Moreira, S.M., J. Coimbra and L. Guilhermino. 2001. Acetylcholinesterase of Mytilus galloprovincialis Lmk. hemolymph: a suitable environmental marker. Bull. Environ. Contam. Toxicol., 67, 470-475
  35. Park, D.W., Q. Jo, H.J. Lim and B. Veron. 2002. Sterol composition of dark-grown Isochrysis galbana and its implication in the seed production of Pacific oyster, Crassostrea gigas. J. Appl. Phycol., 14,351-355 https://doi.org/10.1023/A:1022173906775
  36. Pandey, S, S. Parvez, I. Sayeed, R. Haque, B. Bin-Hafeez and S. Raisuddin. 2003. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (BI. & Schn.). Sci. Total Environ., 309, 105-115 https://doi.org/10.1016/S0048-9697(03)00006-8
  37. Peakall, D. 1994. The role of biomarkers in environmental assessment. (1). Introduction. Ecotoxicology, 3, 157-160 https://doi.org/10.1007/BF00117080
  38. Valencia, E., A. Marin and G. Hardy. 2001. Glutathionenutritional and pharmacological. Viewpoints: Part II. Nutrition, 17, 485-486 https://doi.org/10.1016/S0899-9007(01)00572-X
  39. Vasseur, P. and C. Cossu-Leguille. 2006. Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere, 62, 1033-1042 https://doi.org/10.1016/j.chemosphere.2005.05.043