Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties

  • Kim, Jun-Young (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Kang, Seong-Wook (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Kim, Seong-Hun (Department of Fiber and Polymer Engineering, Hanyang University)
  • 발행 : 2006.12.30

초록

Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

키워드

참고문헌

  1. H. J. Radusch, 'Handbook of Thermoplastic Polyesters', (S. Fakirov ed.), Vol. 1, Wiley-VCH Verlag GmbH, Weinheim, 1993
  2. R. Westdyk and D. McNally, 'Handbook of Plastic Materials and Technology', (I. I. Rubin ed.), John Wiley & Sons Inc., New York, 1990
  3. G. Kiss, Polym. Eng. Sci., 27, 410 (1987) https://doi.org/10.1002/pen.760270606
  4. D. Dutta, H. Fruitwala, A. Kohli, and R. A. Weiss, Polym. Eng. Sci., 30, 1005 (1990) https://doi.org/10.1002/pen.760301704
  5. R. E. S. Bretas and D. G. Baird, Polymer, 33, 5233 (1992) https://doi.org/10.1016/0032-3861(92)90806-8
  6. S. H. Kim, 'Modern Polyesters', (J. Scheirs and T. E. Long eds.), Chap. 20, John Wiley Interscience, New York, 2004
  7. S. H. Kim, S. W. Park, and E. S. Gil, J. Appl. Polym. Sci., 67, 1383 (1997) https://doi.org/10.1002/(SICI)1097-4628(19980222)67:8<1383::AID-APP4>3.0.CO;2-A
  8. S. H. Kim, S. W. Kang, J. K. Park, and Y. H. Park, J. Appl. Polym. Sci., 70, 1065 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1065::AID-APP3>3.0.CO;2-M
  9. S. H. Kim and S. W. Kang, Fibers and Polymers, 1, 83 (2000) https://doi.org/10.1007/BF02875190
  10. D. S. Park and S. H. Kim, J. Appl. Polym. Sci., 87, 1842 (2003) https://doi.org/10.1002/app.11500
  11. S. G. Lee and S. H. Kim, Polym. Int., 52, 698 (2003) https://doi.org/10.1002/pi.1111
  12. J. Y. Kim, E. S. Seo, S. H. Kim, and T. Kikutani, Macromol. Res., 11, 62 (2003) https://doi.org/10.1007/BF03218279
  13. J. Y. Kim, O. S. Kim, S. H. Kim, and H. Y. Jeon, Polym. Eng. Sci., 44, 395 (2004) https://doi.org/10.1002/pen.20036
  14. J. Y. Kim, S. H. Kim, and T. Kikutani, J. Polym. Sci. Part B: Polym. Phys., 42, 395 (2004) https://doi.org/10.1002/polb.10726
  15. J. Y. Kim, S. W. Kang, S. H. Kim, B. C. Kim, K. B. Shim, and J. G. Lee, Macromol. Res., 13, 19 (2005) https://doi.org/10.1007/BF03219011
  16. S. T. Lim, H. S. Kim, and S. H. Kim, J. Korean Fiber Soc., 34(8), 543 (1997)
  17. J. Y. Kim and S. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 43, 3600 (2005) https://doi.org/10.1002/polb.20626
  18. J. Y. Kim and S. H. Kim, J. Appl. Polym. Sci., 99, 2211 (2006) https://doi.org/10.1002/app.22350
  19. J. Y. Kim and S. H. Kim, Polym. Int., 55, 449 (2006) https://doi.org/10.1002/pi.1997
  20. M. P. Sepe, ASTM Spec. Tech. Publ., STP 1369 (Limitations of test methods for plastics), pp.44-53, 2000
  21. L. E. Alexander, 'X-ray Diffraction Methods in Polymer Science', Wiley, New York, 1969
  22. L. E. Nielsen, 'Mechanical Properties of Polymers and Composites', Vol. 2, Marcel Dekker, New York, 1974
  23. D. Jarus, A. Scheibelhoffer, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 60, 209 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960411)60:2<209::AID-APP8>3.0.CO;2-W
  24. M. J. Troughton, G. R. Davies, and I. M. Ward, Polymer 30, 58 (1989) https://doi.org/10.1016/0032-3861(89)90383-2
  25. M. Yokouchi, Y. Sakakibara, Y. Chatani, H. Tadokoro, T. Tanaka, and K. Yoda, Macromolecules, 9, 266 (1976) https://doi.org/10.1021/ma60050a018
  26. A. Kaito, M. Kyotani, and K. Nakayama, Macromolecules, 23, 1035 (1990) https://doi.org/10.1021/ma00206a021
  27. T. Nakinpong, S. Bualek-Limcharoen, A. Bhutton, O. Aungsupravate, and T. Amornsakchai, J. Appl. Polym. Sci., 84, 561 (2002) https://doi.org/10.1002/app.10307
  28. R. Verma, H. Marand, and B. Hsiao, Macromolecules, 29, 7767 (1996) https://doi.org/10.1021/ma951727o
  29. C. G. Vonk, J. Appl. Cryst., 8, 81 (1973)
  30. G. Xue, G. Ji, H. Yan, and M. Guo, Macromolecules, 31, 7706 (1998) https://doi.org/10.1021/ma9802576
  31. A. C. Y. Wong, Composites: Part B, 34, 199 (2003) https://doi.org/10.1016/S1359-8368(02)00080-X
  32. J. L. Thomasson and W. M. Groenewoud, Composites: Part A, 27, 555 (1996) https://doi.org/10.1016/1359-835X(96)00016-4